Szczegóły

Tytuł artykułu

Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2019

Wolumin

vol. 66

Numer

No 2

Afiliacje

Roy, Dipendra Kumar : Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India. ; Tiwari, Rajiv : Faculty of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.

Autorzy

Słowa kluczowe

internal damping ; external damping ; gyroscopic effect ; switching crack ; unbalance ; full-spectrum

Wydział PAN

Nauki Techniczne

Zakres

229-255

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, Boca Raton, FL, USA, 2017.
[2] F. Ehrich. Shaft whirl induced by rotor internal damping. Journal of Applied Mechanics, 31(2):279–282, 1964. doi: 10.1115/1.3629598.
[3] J. Shaw and S. Shaw. Instabilities and bifurcations in a rotating shaft. Journal of Sound and Vibration, 132(2):227–244, 1989. doi: 10.1016/0022-460X(89)90594-4.
[4] W. Kurnik. Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dynamics, 5(1):39–52, 1994.
[5] L.-W. Chen and D.-M. Ku. Analysis of whirl speeds of rotor-bearing systems with internal damping by C 0 finite elements. Finite Elements in Analysis and Design, 9(2):169–176, 1991. doi: 10.1016/0168-874X(91)90059-8.
[6] D.-M. Ku. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing, 12(5):599–610, 1998. doi: 10.1006/mssp.1998.0159.
[7] J. Melanson and J. Zu. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. Journal of Vibration and Acoustics, 120(3):776–783, 1998. doi: 10.1115/1.2893897.
[8] G. Genta. On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. Journal of Vibration and Acoustics, 126(3):459–461, 2004. doi: 10.1115/1.1759694.
[9] M. Dimentberg. Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3):759–765, 2005. doi: 10.1016/j.jsv.2004.11.025.
[10] F. Vatta and A. Vigliani. Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11):1376–1384, 2008. doi: 10.1016/j.mechmachtheory.2007.12.009.
[11] J. Fischer and J. Strackeljan. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints. Technische Mechanik, 26(2):131–147, 2006.
[12] O. Montagnier and C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissipative supports – effects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 305(3):378–400, 2007. doi: 10.1016/j.jsv.2007.03.061.
[13] M. Chouksey, J.K. Dutt, and S.V. Modak. Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, 2012. doi: 10.1016/j.mechmachtheory.2011.09.001.
[14] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1):17–21, 1991.
[15] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
[16] I. Mayes and W. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(1):139–145, 1984. doi: 10.1115/1.3269142.
[17] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
[18] M. Karthikeyan,R. Tiwari, S. and Talukdar. Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of Vibration and Acoustics, 129(3):390–395, 2007. doi: 10.1115/1.2424981.
[19] S.K. Singh and R. Tiwari. Identification of a multi-crack in a shaft system using transverse frequency response functions. Mechanism and Machine Theory, 45(12):1813–1827, 2010. doi: 10.1016/j.mechmachtheory.2010.08.007.
[20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic excitation forces of a transverse switching crack in a Laval rotor. Fatigue & Fracture of Engineering Materials & Structures, 36(3):254–269, 2013. doi: 10.1111/j.1460-2695.2012.01718.x.
[21] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
[22] S. Singh and R. Tiwari. Model-based switching-crack identification in a Jeffcott rotor with an offset disk integrated with an active magnetic bearing. Journal of Dynamic Systems, Measurement, and Control, 138(3):031006, 2016. doi: 10.1115/1.4032292.
[23] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122: 292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
[24] C. Shravankumar. Crack Identific in Rotors with Full-Spectrum. Ph.D. Thesis, IIT Guwahati, India, 2014.
[25] A.D. Dimarogonas. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics, 55(5): 831–857, 1996. doi: 10.1016/0013-7944(94)00175-8.

Data

23.05.2019

Typ

Artykuły / Articles

Identyfikator

DOI: 10.24425/ame.2019.128446 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; 2019; vol. 66; No 2; 229-255
×