Details
Title
Experimental identification of rotating and stationary damping in a cracked rotor system with an offset discJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 4Affiliation
Roy, Dipendra Kumar : Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India. ; Tiwari, Rajiv : Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India.Authors
Keywords
rotating (internal) damping ; stationary (external) damping ; gyroscopic effect ; switching crack ; unbalance ; full-spectrumDivisions of PAS
Nauki TechniczneCoverage
447-474Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, USA, 2017. doi: 10.1201/9781315230962.[2] F. Ehrich. Shaft whirl induced by rotor internal damping. Journal of Applied Mechanics, 31(2):279–282, 1964. doi: 10.1115/1.3629598.
[3] L.-W. Chen and D.-M. Ku. Analysis of whirl speeds of rotor-bearing systems with internal damping by C 0 finite elements. Finite Elements in Analysis and Design, 9(2):169–176, 1991. doi: 10.1016/0168-874X(91)90059-8.
[4] D.-M. Ku. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing, 12(5):599–610, 1998. doi: 10.1006/mssp.1998.0159.
[5] J. Melanson and J. Zu. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. Journal of Vibration and Acoustics, 120(3):776–783, 1998. doi: 10.1115/1.2893897.
[6] G. Genta. On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. Journal of Vibration and Acoustics, 126(3):459–461, 2004. doi: 10.1115/1.1759694.
[7] M. Dimentberg. Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3):759–765, 2005. doi: 10.1016/j.jsv.2004.11.025.
[8] F. Vatta and A. Vigliani. Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11):1376–1384, 2008. doi: 10.1016/j.mechmachtheory.2007.12.009.
[9] J. Fischer and J. Strackeljan. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints. Technische Mechanik, 26(2):131–147, 2006.
[10] O. Montagnier and C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissipative supports – effects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 305(3):378–400, 2007. doi: 10.1016/j.jsv.2007.03.061.
[11] M. Chouksey, J.K. Dutt, and S.V. Modak. Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, 2012. doi: 10.1016/j.mechmachtheory.2011.09.001.
[12] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1):17–21, 1991.
[13] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
[14] I. Mayes and W. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(1):139–145, 1984. doi: 10.1115/1.3269142.
[15] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
[16] M. Karthikeyan, R. Tiwari, S. and Talukdar. Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of Vibration and Acoustics, 129(3):390–395, 2007. doi: 10.1115/1.2424981.
[17] S.K. Singh and R. Tiwari. Identification of a multi-crack in a shaft system using transverse frequency response functions. Mechanism and Machine Theory, 45(12):1813–1827, 2010. doi: 10.1016/j.mechmachtheory.2010.08.007.
[18] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic excitation forces of a transverse switching crack in a Laval rotor. Fatigue & Fracture of Engineering Materials & Structures, 36(3):254–269, 2013. doi: 10.1111/j.1460-2695.2012.01718.x.
[19] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
[20] S. Singh and R. Tiwari. Model-based switching-crack identification in a Jeffcott rotor with an offset disk integrated with an active magnetic bearing. Journal of Dynamic Systems, Measurement, and Control, 138(3):031006, 2016. doi: 10.1115/1.4032292.
[21] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122: 292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
[22] D.K. Roy, and R. Tiwari. Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls. Archive of Mechanical Engineering, 66(2):229–255. doi: 10.24425/ame.2019.128446.
[23] M. G. Maalouf. Slow speed vibration signal analysis: if you can’t do it slow, you can’t do it fast. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, volume 5, pages 559–567. Montreal, Canada, 14–17 May, 2007. doi: 10.1115/GT2007-28252.
[24] C. Shravankumar, R. Tiwari, and A. Mahibalan. Experimental identification of rotor crack forces. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics: pp. 361–371, 2015. doi: 10.1007/978-3-319-06590-8_28.