Details

Title

Ridge geometry effect on the behavior of elastohydrodynamic lubrication of point contact problem

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 4

Affiliation

Al-Samieh, Mohamed F. Abd : Mechanical Design & Production Department, Military Technical College, Cairo, Egypt.

Authors

Keywords

surface roughness ; transverse ridge ; elastohydrodynamics ; amplitude

Divisions of PAS

Nauki Techniczne

Coverage

491-508

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] R. Gohar and H. Rahnejat. Fundamentals of Tribology. Imperial College Press, London, 2008.
[2] N. Patir and H.S. Cheng. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology, 100(1):12–17, 1978. doi: 10.1115/1.3453103.
[3] D. Epstein, T. Yu, Q.J. Wang, L.M. Keer, H.S. Cheng, S. Liu, S.J. Harris, and A. Gangopadhyay. An efficient method of analyzing the effect of roughness on fatigue life in mixed-EHL contact. Tribology Transactions, 46(2):273–281, 2003. doi: 10.1080/10402000308982626.
[4] Q.J. Wang, D. Zhu, H.S. Cheng, T. Yu, X. Jiang, and S. Liu. Mixed lubrication analyses by a macro-micro approach and a full-scale mixed EHL model. Journal of Tribology, 126(1):81–91, 2004. doi: 10.1115/1.1631017.
[5] M. Masjedi and M.M. Khonsari. On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load. Tribology International, 82(Part A):228–244, 2015. doi: 10.1016/j.triboint.2014.09.010.
[6] Y.Z. Hu and D. Zhu. A full numerical solution to the mixed lubrication in point contacts. Journal of Tribology, 122(1):1–9, 2000. doi: 10.1115/1.555322.
[7] B. Jacod, C.H. Venner, and P.M. Lugt. Influence of longitudinal roughness on friction in EHL contacts. Journal of Tribology, 126(3):473–481, 2004. doi: 10.1115/1.1705664.
[8] P. Yang, J. Cui, Z.M. Jin, and D. Dowson. Influence of two-sided surface waviness on the EHL behavior of rolling/sliding point contacts under thermal and non-Newtonian conditions. Journal of Tribology, 130(4):041502, 2008. doi: 10.1115/1.2958078.
[9] J. Wang, C.H. Venner, and A.A. Lubrecht. Amplitude reduction in EHL line contacts under rolling sliding conditions. Tribology International, 44(12):1997–2001, 2011. doi: 10.1016/j.triboint.2011.08.009.
[10] C.H. Venner and A.A. Lubrecht. Numerical simulation of a transverse ridge in a circular EHL contact under rolling/sliding. Journal of Tribology, 116(4):751–761, 1994. doi: 10.1115/1.2927329.
[11] M.J.A. Holmes, H.P. Evans, T.G. Hughes, and R.W. Snidle. Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method Part 1: Theory and validation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(4):289–304, 2003. doi: 10.1243/135065003768618641.
[12] A. Félix-Quiñonez, P. Ehret, and J.L. Summers. Numerical analysis of experimental observations of a single transverse ridge passing through an elastohydrodynamic lubrication point contact under rolling/sliding conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 218(2):109–123, 2004. doi: 10.1177/135065010421800206.
[13] A. Félix-Quiñonez, P. Ehret, J.L. Summers, and G.E. Morales-Espejel. Fourier analysis of a single transverse ridge passing through an elastohydrodynamically lubricated rolling contact: a comparison with experiment. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 218(1):33–43, 2004. doi: 10.1243/135065004322842816.
[14] M. Kaneta, H. Nishikawa and K. Matsuda. Behaviour of transverse ridges passing through a circular EHL conjunction. In: Snidle R.W., Evans H.P. (eds) IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamics, pages 189–200, Cardiff, UK, 1–3 September, 2004. doi: 10.1007/1-4020-4533-6_13.
[15] I. Křupka, M. Hartl, L. Urbanec, and J. Čermák. Single dent within elastohydrodynamic contact – comparison between experimental and numerical results. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221(6):635–644, 2007. doi: 10.1243/13506501JET276.
[16] X. Feng Wang, R.F. Hu, W. Shang and F. Zhao. Experimental and numerical investigation on single dent with marginal bump in EHL point contacts. Industrial Lubrication and Tribology, 69(2):798-807, 2017.
[17] I. Ficza, P. Sperka, and M. Hartl. Transient calculations in elastohydrodynamically lubricated point contacts. Engineering Mechanics, 21(5):311–319, 2014.
[18] P. Sperka. In-situ studium zmeny topografie trecích povrchu v elastohydrodynamickém kontaktu (In-situ Study of Surface Topography changes in Elastoydrodynamic Contact). Ph.D. Thesis. Brno University of Technology, Czech Republic, 2011. (in Czech).
[19] F. Ali, M. Kaneta, I. Křupka, and M. Hartl. Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts. Tribology International, 84:81–89, 2015. doi: 10.1016/j.triboint.2014.11.025.
[20] P. Sperka, I. Křupka, and M. Hartl. Prediction of shallow indentation effects in a rolling-sliding ehl contact based on amplitude attenuation theory. Tribology Online, 12(1):1–7, 2017. doi: 10.2474/trol.12.1.
[21] D. Kostal, P. Sperka, I. Křupka, and M. Hartl. Artificial surface roughness deformation in the starved EHL contacts. Tribology Online, 13(1):1–7, 2018. doi: 10.2474/trol.13.1.
[22] T. Hultqvist, A. Vrcek, P. Marklund, B. Prakash, and R. Larsson. Transient analysis of surface roughness features in thermal elastohydrodynamic contacts. Tribology International, 141:105915, 2020. doi: 10.1016/j.triboint.2019.105915.
[23] M.F. Al-Samieh and H. Rahnejat. Nano-lubricant film formation due to combined elastohydrodynamic and surface force action under isothermal conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(9):1019–1029, 2001. doi: 10.1177/095440620121500902.
[24] M.F. Al-Samieh. Effect of changing ellipiticity ratio on the formation of ultra-thin lubricating film. Tribology in Industry, 39(4):431–443, 2017. doi: 10.24874/ti.2017.39.04.02.
[25] M.F. Al-Samieh. Surface roughness effects for newtonian and non-Newtonian lubricants. Tribology in Industry, 41(1):56–63, 2019. doi: 10.24874/ti.2019.41.01.07.
[26] D. Dowson and G.R. Higginson. A numerical solution to the elastohydrodynamic problem. Journal of Mechanical Engineering Science, 1(1):6–15, 1959. doi: 10.1243/JMES_JOUR_1959_001_004_02.
[27] C.J.A. Roelands. Correlation aspects of viscosity-temperature-pressure relationship of lubricating oils. Ph.D. Thesis. Delft University of Technology, The Netherlands, 1966.

Date

2020.12.22

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131704 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 4; 491-508
×