Details

Title

The study of local terrain modeling methods for vertical planning of the territory

Journal title

Geodesy and Cartography

Yearbook

2021

Volume

vol. 70

Issue

No 2

Authors

Affiliation

Trevoho, Ihor : Lviv Polytechnic National University, Lviv, Ukraine ; Ostrovskiy, Apollinariy : Lviv Polytechnic National University, Lviv, Ukraine ; Kolb, Ihor : Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine ; Ostrovska, Olena : Lviv Technical and Economic College of Lviv Polytechnic National University, Lviv, Ukraine ; Zhyvchuk, Viacheslav : 2Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine

Keywords

DEM ; RMSE ; vertical planning ; the volume of earthworks ; TIN

Divisions of PAS

Nauki Techniczne

Coverage

article no. e09

Publisher

Polska Akademia Nauk/ Komitet Geodezji Polskiej Akademii Nauk; Polish Academy of Sciences / Commitee on Geodesy Polish Academy of Sciences

Bibliography

Abris Design Group (2021). https://abris.aero/category/produkts-en/#FLIRT%20Arrow.
Aguilar, F.J., Rivas, J.R., Nemmaoui, A. et al. (2019). UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador. Sensors, 19(8), 1934. DOI: 10.3390/s19081934.
Akgul, M., Yurtseven, H., Gulci, S. et al. (2018). Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume. Arab. J. Sci. Eng., 43, 1893–1909. DOI: 10.1007/s13369-017-2811-9.
Al-Jabbar Hadi, A.A. and Alhaydary, M. (2018). Calculations of earthwork quantity by using civil 3d. J. Engineer. Sustain. Dev., 6, 13–20. DOI: 10.31272/jeasd.2018.6.2.
Baran, P.I. and Marushchak, M.P. (2011). Methods of vertical planning for construction sites. Geodesy Cartogr., 6, 9–15.
Burshtynska, Kh.V. and Zayats, O.S. (2002). Research of accuracy of construction of digital models of a relief on the basis of cartographic data. Geodesy Cartogr., 2, 26–31.
Christ, A., Europe, E., and Horlbeck, I. (2018). Simplify Your 3D Models – Collaborative Engineering Based on Lightweight CAD Data. Product Data Journal, 2, 28–31. http://prostep.epaper.pro/ journal-2018-02/en/#28.
Chudý, R., Iring, M., and Feciskanin, R. (2013). Evaluation of the data quality of digital elevation models in the context of INSPIRE. Geoscience Engineering, 2, 9–24. DOI: 10.2478/gse-2014-0053.
Dorozhinsky, O. and Tukay, R. (2008). Photogrammetry. Textbook. Lviv: Lviv Polytechnic National University Publishing House.
Garasymchuk, I.F. (2003). Operational method elaboration of the soil volume determination. PhD thesis (geodesy). National University “Lviv Polytechnic”. Lviv.
Haronian, E. and Sacks, R. (2020). Production process evaluation for earthworks. In Tommelein, I.D. and Daniel, E. (eds.), Proceedings of 28th Annual Conference of the International Group for Lean Construction (IGLC28), Berkeley, California, USA. DOI: 10.24928/2020/0020.
Hlotov, V., Hunina, R´ ., Kolesnichenko, V. et al. (2018). Development and investigation of UAV for aerial surveying. Geodesy Cartogr. Aerial Photogr., 87, 48–57. DOI: 10.23939/istcgcap2018.01.048.
Hamid I.H.A., Narendrannathan, N., Choy L.E. et al. (2019). Innovation in earthwork practices. In IOP Conference Series Materials Science and Engineering, 512:012054. DOI: 10.1088/1757- 899X/512/1/012054.
Kolb, I.Z. (2000). The analytical aerial triangulation when the coordinates of centers of projection are known. PhD thesis (geodesy). Lviv Polytechnic National University, Lviv.
Kong, N.T. (2011). Research and development of a high-performance algorithm for constructing digital elevation models. PhD thesis (geodesy). Moscow State University of Geodesy and Cartography, Moscow.
Kostov, G. (2016). Vertical planning based on 3d terrestrial laser scanning and GNSS technologies. In XXV International symposium on modern technologies, education and professional practice in geodesy and related fields. Sofia, November 3-4, 2016.
Liu, Q., Duan, Q., Zhao, P. et al. (2021). Summary of calculation methods of engineering earthwork. J. Phys. Conference Series, 1802, 032002. DOI: 10.1088/1742-6596/1802/3/032002.
Ministry of Justice of Ukraine. (1998). Instruction on topographic survey in scales 1:5000, 1:2000, 1:1000 and 1:500 (GKNTA-2.04-02-98), approved by the order of Ukrgeodeskartografiya dated 09.04.98, No. 56, registered in the Ministry of Justice of Ukraine on 23.06.98, No. 393/2833.
Novakovsky, B.A. and Permyakov, R.V. (2019). Complex geoinformation-photogrammetric modeling of relief: a tutorial. Moscow: Publishing house MIIGAiK.
Ostrovsky, A. (2015a). Criteria of quality, accuracy and completeness digital elevation models. Engineer. Geodesy, 62, 23–31.
Ostrovsky, A.V. (2015b). Review of some methods of relief approximation. Mìstobuduvannâ ta teritorìal’ne planuvannâ, 58, 380–391.
Ostrovsky, A.V. (2016). Features of using kriging method for approximating relief. Journal of Lviv National Agrarian University. Architecture and Farm Building, 17, 33–41. Photomod. (2019). Digital photogrammetric system Photomod. Version 6.0.1 User Guide. Creation of a digital elevation model. Moscow: Rakurs.
Qiu, L. (2017). Vertical urban planning and flood control and drainage using GIS technology. Open House International, 42(3), 10–14. DOI: 10.1108/OHI-03-2017-B0003.
Ravibabu, M.V. and Jain, K. (2008). Digital elevation model accuracy aspects. J. Appl. Sci., 8(1), 134–139. DOI: 10.3923/jas.2008.134.139.
Rudyj, R.M. (2016). Application of artificial neural networks for classifying surface areas with a certain relief. Geodesy Cartogr. Aerial Photogr., 83, 124–132. DOI: 10.23939/istcgcap2016.01.124.
Schultz, R.V., Belous, M.V., Annenkov, A.O. et al. (2013). Features of engineering and geodetic support for the construction of Arena Lviv stadium. Mìstobuduvannâ ta teritorìal’ne planuvannâ, 50, 759– 766.
Schultz, R.V. and Ostrovsky, A.V. (2016). Investigation of the statistical distribution of residual deviations for various approaches to digital elevation modeling. Scientific Journal, 1/2(18), 44–52.
Toth, C., Jozkow, G., and Grejner-Brzezinska, D. (2015). Mapping with small UAS: A point cloud accuracy assessment. J. Appl. Geod., 9(4), 213–226. DOI: 10.1515/jag-2015-0017.
Zhilin, L., Qing, Z., and Chris, G. (2005). Digital terrain modeling: principles and methodology. CRC Press.

Date

2021.11.10

Type

Article

Identifier

DOI: 10.24425/gac.2021.136684

Aims and scope

The Advances in Geodesy and Geoinformation (formerly “Geodesy and Cartography”) is an open access international journal (semiannual) concerned with the study of scientific problems in the field of geodesy, geoinformation and their related interdisciplinary sciences. The journal has a rigorous peer–review process to ensure the best research publications. It is publishing peer–reviewed original articles on theoretical or modelling studies, and on results of experiments associated with geodesy and geodynamics, geoinformation, cartography and GIS, cadastre and land management, photogrammetry, remote sensing and related disciplines. Besides original research articles, the Advances in Geodesy and Geoinformation also accepts review articles on topical subjects, short notes/letters and communication of a great importance to the readers, and special issues arising from the national/international conferences as well as collection of articles that concentrates on a hot topical research area that falls within the scope of the journal.

Content of Advances in Geodesy and Geoinformation is archived with a long-term preservation service by the National Library of Poland.

×