Details

Title

Nontrivial Variations of MorphoAnatomical Leaf Traits in Natural SouthEastern Populations of Vaccinium species from Central Balkans

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2021

Volume

Vol. 63

Issue

No 2

Affiliation

Bjedov, Ivana : University of Belgrade – Faculty of Forestry, Kneza Višeslava 1, 11000 Belgrade, Serbia ; Obratov-Petković, Dragica : University of Belgrade – Faculty of Forestry, Kneza Višeslava 1, 11000 Belgrade, Serbia ; Rakonjac, Vera : University of Belgrade – Faculty of Agriculture, Nemanjina 6, 11080 Belgrade – Zemun, Serbia ; Skočajić, Dragana : University of Belgrade – Faculty of Forestry, Kneza Višeslava 1, 11000 Belgrade, Serbia ; Bojović, Srđan : Institute for Biological Research “Siniša Stanković“, Bulevar Despota Stefana142, 11000 Belgrade, Serbia ; Marković, Milena : Institute for Biological Research “Siniša Stanković“, Bulevar Despota Stefana142, 11000 Belgrade, Serbia ; Dajić-Stevanović, Zora : Institute for Biological Research “Siniša Stanković“, Bulevar Despota Stefana142, 11000 Belgrade, Serbia

Authors

Keywords

analysis of variance ; climate factors ; cluster analysis ; elevational gradient ; intraspecific and interspecific variability ; principal component analysis ; Serbia

Divisions of PAS

Nauki Biologiczne i Rolnicze

Coverage

7-16

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Bibliography

ALPERT P, and SIMMS E. 2002. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Ecology and Evolution 16: 285-297.

BJEDOV I. 2012. Taxonomic and ecological investigation of Vaccinium L. genus in Serbia. PhD dissertation, Uni-versity of Belgrade, Faculty of Forestry, Belgrade, Serbia.

BJEDOV I, OBRATOV-PETKOVIĆ D, MIŠIĆ D, ŠILER B, and ALEKSIĆ JM. 2015. Genetic patterns in range-edge populations of Vaccinium species from the central Balkans: implications on conservation prospects and sustain-able usage. Silva Fennica 49(4): 1-23.

BLAŽENČIĆ J. 1990. Praktikum iz anatomije biljaka sa osnovama mikroskopske tehnike. Naučna knjiga, Beograd.

CASTRO-DÍEZ P, VILLAR-SALVADOR P, PÉREZ-RONTOMÉ C, MAESTRO-MARTÍNEZ M, and MONTSERRAT-MARTÍ G. 1997. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11: 127-134.

CHABOT BF, and HICKS DJ. 1982. The ecology of leaf life spans. Annual Review of Ecology, Evolution, and Systematics 13: 229-259.

CHARLES AK, and DAVID DA. 2003. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist 160(2): 337-349.

CORDELL S, GOLDSTEIN G, MUELLER-DOMBOIS D, WEBB D, and VITOUSEK PM. 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188-196.

CORNELISSEN JHC. 1999. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118: 248--255.

CORNWELL WK, and ACKERLY DD. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79(1): 109-126.

HIJMANS RJ, CAMERON SE, PARRA JL, JONES PG, and JARVIS A. 2005. Very high resolution interpolated climate sur-faces for global land areas. International Journal of Climatology 25: 1965-1978.

JENSEN WA. 1962. Botanical Histochemistry: Principles and Practice. W.H. Freeman, San Francsco.

KAO WY, and CHANG KW. 2001. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. Australian Journal of Botany 49: 509-514.

KIKUZAWA K. 1995. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany 73: 158-163.

KOFIDIS G, BOSABALIDIS AM, and MOUSTAKAS M. 2007. Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environmental and Experimental Botany 60: 69-76.

KÖRNER C, and DIEMER M. 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology 1: 179-194.

KÖRNER C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22(11): 569-574.

LARCHER W. 1995. Physiological plant ecology, 3rd edition. Springer, Berlin.

LEVITT J. 1972. Responses of plants to environmental stresses. Academic Press, New York.

LEYMARIE J, LASCEVE G, and VAVASSEUR A. 1999. Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant, Cell and Environment 22(3): 301-314.

MAYFIELD MM, and LEVINE JM. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085-1093.

MEMBRIVES N, PEDROLA-MONFORT J, and CAUJAPÉ-CASTELLS J. 2003. Correlations between morphological-anatomical leaf characteristics and environmental traits in South-west African species of Androcymbium (Colchicaceae). Botanica Macaronésica 24: 73-85.

MORECROFT MD, and WOODWARD FI. 1996. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. New Phytologist 134: 471-479.

PATO J, and OBESO JR. 2012. Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Ecoscience 19: 59-68.

READ QD, MOORHEAD LC, SWENSON NG, BAILEY JK, and SANDERS NJ. 2014. Convergent effects of elevation on functional leaf traits within and among species. Functional Ecologist 28: 37-45.

TOMIĆEVIĆ J, BJEDOV I, OBRATOV-PETKOVIĆ D, and MILOVANOVIĆ M. 2011. Exploring the park–people relation: collection of Vaccinium myrtillus L. by local people from Kopaonik National Park in Serbia. Environmental Management 48: 835-846.

TOIVONEN JM, HORNA V, KESSLER M, RUOKOLAINEN K, and HERTEL D. 2014. Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: Evidence for climatic adaptations. Functional Plant Biology 41(13): 301--312.

Date

2022.01.13

Type

Article

Identifier

DOI: 10.24425/abcsb.2021.136700
×