Effort of the protective structure of the shelter under the influence of an external fire

Journal title

Archive of Mechanical Engineering




vol. 68


No 2


Baryłka, Adam : Centre of Construction Expertise, Warsaw, Poland



excavation shelter ; fire ; numerical analysis ; part-time processes

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] A. Dorsz, A. Rusowicz, and A. Prawdzik. Comparative analysis of assumptions for numerical simulation of the effects of fire – safety of evacuation from the building structure. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 4(2020):212–226, 2020. doi: 10.37105/iboa.89.
[2] A. Asgary, A.S. Naini, and J. Levy. Intelligent security systems engineering for modeling fire critical incidents: towards sustainable security. Journal of Systems Science and Systems Engineering, 18(4):477–488, 2009. doi: 10.1007/s11518-009-5121-2.
[3] J.L. Coen. Some new basics of fire behavior. Fire Management Today, 71(1):38–43, 2011.
[4] T. Putnam and B.W. Butler. Evaluating fire shelter performance in experimental crown fires. Canadian Journal of Forest Research, 34(8):1600–1615, 2004. doi: 10.1139/X04-091.
[5] E. Ozbay, Ö. Çavus, and B.Y. Kara. Shelter site location under multi-hazard scenarios. Computers and Operations Research, 106:102–118, 2019. doi: 10.1016/j.cor.2019.02.008.
[6] R. Linn, K. Anderson, J. Winterkamp, A. Brooks, M. Wotton, J-L. Dupuy, F. Pimont, and C. Edminster. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned. Canadian Journal of Forest Research, 42(5):879–898, 2012. doi: 10.1139/X2012-038.
[7] Ch. Zhang, J.G. Silva, C. Weinschenk, D. Kamikawa, and Y. Hasemi. Simulation methodology for coupled fire-structure analysis: modeling localized fire tests on a steel column. Fire Technology, 52:239–262, 2016. doi: 10.1007/s10694-015-0495-9.
[8] T. Molkens and B. Rossi. On the simulation of real fire for post fire resistance evaluation of steel structures. Fire Technology, 57:839–871, 2021. doi: 10.1007/s10694-020-01025-6.
[9] N. Johansson, J. Anderson, R. McNamee, and Ch. Pelo. A Round Robin of fire modelling for performance-based design. Fire and Materials, 2020;1–14, doi: 10.1002/fam.2891.
[10] J. Lu, T. Wang, L. Wang, W. Chen, and Y. Chen. Optimization of duct structure and analysis of its impact on temperature inside the shelter. Journal of Physics: Conference Series, 1300:012011, 2019. doi: 10.1088/1742-6596/1300/1/012011.
[11] A.Baryłka. The impact of fire on changing the strength of the underground shelter structure. Rynek Energii, 146(1):71–75, 2020.
[12] T.J. Cova, P.E. Dennison, and F.A. Drews. Modeling evacuate versus shelter-in-place decisions in wildfires. Sustainability, 3(10):1662–1687, 2011. doi: 10.3390/su3101662.
[13] M.D. Lulea, V. Iordache, and I. Năstase. Fire modeling in a nonventilated corridor. E3S Web of Conferences, 32:01011, 2018. doi: 10.1051/e3sconf/20183201011.
[14] C. Salter. Fire modelling within cloud based resources. Fire Technology, 51:491–497, 2015. doi: 10.1007/s10694-014-0433-2.
[15] M. Krajčír and J. Müllerová. 3D small-scale fire modeling experiments. Procedia Engineering, 192:474–479, 2017. doi: 10.1016/j.proeng.2017.06.082.
[16] Y. Varaksin. Concentrated air and fire vortices: Physical modeling (a review). High Temperature, 54(3):409–427, 2016. doi: 10.1134/S0018151X16030226.
[17] Ch. Lautenberger, G. Rein, and C. Fernandez-Pello. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Safety Journal, 41(3):204–214, 2006. doi: 0.1016/j.firesaf.2005.12.004.
[18] A. Dorsz and A. Rusowicz. Numerical modelling of the influence of thermal effects on the exhaust fans in the fire ventilation systems. Rynek Energii, 154(3):85–90, 2021. (in Polish).
[19] J.A. Prusiel. Theoretical and experimental analysis of thermal fields distribution in granular media stored in silo model. Acta Agrophysica, 19(2):391–402, 2012. (in Polish).
[20] PN-EN: 1991-1-2:2006 – Actions on structures exposed to fire.
[21] Z. Garncarek and J. Idzik. Degree of heterogeneity of thermal field a method of evaluation. International Journal of Heat and Mass Transfer, 35(11):2769–2775, 1992. doi: 10.1016/0017-9310(92)90297-6.
[22] A. Baryłka and D. Tomaszewicz. Influence of measuring deviations of the components of layered walls on their durability. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 3(2020):155–162, 2020.doi: 10.37105/iboa.75.
[23] M. Abramowicz. Design of building structures subject to fire exposure according to Eurocodes. Kalendarz budowlany 2008 r.. Chapter 18. Warszawskie Centrum Postępu Techniczno-Organizacyjnego Budownictwa WACETOB. (in Polish)
[24] A. Baryłka. The issue of the fitness of buildings for use in the issues of safety engineering of these objects. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 4, 2019, (in Polish). doi: 10.37105/iboa.31.
[25] A. Baryłka and D. Tomaszewicz. Influence of surface shape of glued anchors on their load capacity. Modern Engineering, 2:78–82, 2020.
[26] E. Kostowski. Heat Flow. WPŚL, Gliwice, 2000. (in Polish).






DOI: 10.24425/ame.2021.137047 ; ISSN 0004-0738, e-ISSN 2300-1895