Analysis of emission abatement scenario to improve urban air quality

Journal title

Archives of Environmental Protection




vol. 47


No 2


Holnicki, Piotr : Systems Research Institute, Polish Academy of Sciences, Poland ; Kałuszko, Andrzej : Systems Research Institute, Polish Academy of Sciences, Poland ; Nahorski, Zbigniew : Systems Research Institute, Polish Academy of Sciences, Poland



scenario analysis ; urban air quality ; emission abatement ; Euro Norm limits ; public health risk

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Bebkiewicz, K., Chłopek, Z., Lasocki, J., Szczepański, K. & Zimakowska-Laskowska, M. (2020). The inventory of pollutants hazardous to the health of living organisms, emitted by road transport in Poland between 1990 and 2017, Sustainability, 12, pp. 1–2, 5387, DOI: 10.3390/su12135387
  2. Berkowicz, R., Winther, M. & Ketzel, M. (2006). Traffic pollution modelling and emission data. Environmental Modelling & Software, 21, pp. 454–460. DOI: 10.1016/j.envsoft.2004.06.013
  3. Buchholz, S., Krein, A., Junk, J., Heinemann, G. & Hoffmann, L. (2013). Simulation of Urban-Scale Air Pollution Patterns in Luxembourg: Contributing Sources and Emission Sce-narios. Environmental Modeling & Assessment, 18, pp. 271–283, DOI: 10.1007/s10666-012-9351-1
  4. Calori, G., Clemente, M., De Maria, R., Finardi, S., Lollobrigida, F., Tinarelli, G. (2006). Air quality integrated modelling in Turin urban area. Environmental Modelling & Software, 21, pp. 468–476, DOI:10.1016/j.envsoft.2004.06.009
  5. Costa, S., Ferreira, J., Silveira, C., Costa, C., Lopes, D., Revals, H., Borrego, C., Robeling, P., Miranda, A.I., Texeira, J.P. (2014). Integrating Health on Air Quality Assessment - Review Report on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of Toxicology and Environmental Health, Part B, 17(6), pp. 307–340. DOI: 10.1080/10937404.2014.946164
  6. Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S. (2017). Impact of passenger car NOx emissions on urban NO2 pollution – Scenario analysis for 8 European cities. Atmospheric Environment, 171, pp. 330–337, DOI: 10.1016/j.atmosenv.2017.10.040
  7. Degraeuwe, B., Pisoni, E., Peduzzi, E., De Meij, A., Monforti-Ferrario, F., Bodis, K., Mascherpa, A., Astorga-Llorens, M., Thunis, P and Vignati, E. (2019). Urban NO2 Atlas (EUR 29943 EN), Publications Office of the European Union, Luxembourg.
  8. EC (2008). AAQD, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.
  9. EC (2015). Urban air pollution – what are the main sources across the world?
  10. EC (2016). SHERPA: a computational model for better air quality in urban areas.
  11. European Commission Report.
  12. EC (2019). Air quality: traffic measures could effectively reduce NO2 concentrations by 40% in cities.
  13. EEA (2018). Air quality in Europe — 2018 report. EEA Report, No 12/2018.
  14. EEA (2019). Air quality in Europe — 2019 report. EEA Report, No 10/2019
  15. Holnicki, P., Kałuszko, A., Stankiewicz, K. (2016). Particulate matter air pollution in an urban area. A case study. Operations Research and Decisions, 3, pp. 43–56. DOI: 10.5277/ord160303
  16. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K., & Trapp, W. (2017a) Air quality modeling for Warsaw agglomeration. Archives of Environmental Protection, 43, pp. 48–64, DOI: 10.1515/aep-2017-0005
  17. Holnicki, P., Tainio, M., Kałuszko, A., Nahorski, Z. (2017b). Burden of mortality and disease attributable to multiple air pollutants in Warsaw, Poland. International Journal of Environmental Research and Public Health, 14, 1359, DOI:10.3390/ijerph14111359
  18. Holnicki, P., Kałuszko, A., Nahorski, Z., Tainio, M. (2018). Intra-urban variability of the intake fraction from multiple emission sources. Atmospheric Pollution Research, 9, pp. 1184–1193, DOI: 10.1016/j.apr.2018.05.003
  19. Juda-Rezler, K., Reizer. M., Maciejewska, K., Błaszczak, B., Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729 pp. 1–15. DOI: 10.1016/j.scitotenv.2020.136729
  20. Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, pp. 475–483, DOI: 10.1016/j.atmosenv.2015.08.087
  21. Kiesewetter, G., Borken-Kleefeld, J., Schöpp, W., Heyes, C., Thunis, P., Bessagnet. B., Terrenoire, E., Gsella, A., and Amann, M. (2014). Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmospheric Chemistry and Physics, 14, pp. 813–829. DOI: 10.5194/acp-14-813-2014
  22. Mediavilla-Sahagún, A., ApSimon, H.M. (2006). Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environmental Modelling & Software, 21, pp. 501–513, DOI:10.1016/j.envsoft.2004.06.010
  23. Pisoni, E., Thunis, P., Clappier, A. (2019). Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment, X4, 100047, pp. 1–11. DOI: 10.1016/j.aeaoa.2019.100047
  24. Połednik, B., Piotrowicz, A., Pawłowski, L., Guz, Ł. (2018). Traffic-related particle emissions and exposure on an urban road. Archives of Environmental Protection, 44, no. 2, pp. 83–93, DOI: 10.24425/119706
  25. Rith, M., Fillone, A.M., Biona, J.B.M.M. (2020). Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southern Asia – A case study of Metro Manila. Applied Energy, 275, 115240, DOI: 10.1016/j.apenergy.2020.115240
  26. Tainio, M. (2015). Burden of disease caused by local transport in Warsaw, Poland. Journal of Transport & Health, 2, pp. 423–433, DOI: 10.1016/j.jth.2015.06.005
  27. Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C.A., Pirovano, G., Janssen, S., Guerreiro, C., Peduzzi, E. (2019). Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 130, pp. 1-12, DOI: 10.1016/j.envint.2019.05.019
  28. Thunis, P., Degraeuwe, B., Pisoni, E., Ferrari, F., Clappier, A. (2016). On the design and assessment of regional air quality plans: The SHERPA approach. Journal of Environmental Management, 183, pp. 952-958, DOI: 10.1016/j.jenvman.2016.09.049
  29. WHO (2015). Database on source apportionment studies for particulate matter in the air (PM10 and PM2.5).
  30. WHO (2018). Ambient (outdoor) air pollution.
  31. WIOŚ (2012). Environment Quality in Mazovian Voivodship in the year 2012. Voivodship Inspectorate of Environment Protection. Report for the year 2012. (in Polish).
  32. Dieselnet_LD (2019). 15 JUNE 2020
  33. Instalreporter (2013). 25 JAN 2018 (in Polish).
  34. Interia (2019).,nId,4268597 26 DEC 2019 (in Polish).
  35. SMOGLAB (2016). 20 OCT 2019 (in Polish).
  36. Transportpolicy (2018). 10 DEC 2018.
  37. UM (2020). 26 FEB 2020 (in Polish).






DOI: 10.24425/aep.2021.137282

Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science