Details
Title
Methane and hydrogen production from potato wastes and wheat straw under dark fermentationJournal title
Chemical and Process EngineeringYearbook
2021Volume
vol. 42Issue
No 1Affiliation
Sołowski, Gaweł : Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, Poland ; Konkol, Izabela : Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, Poland ; Shalaby, Marwa : National Research Center in Cairo, Department of Chemical Engineering and Pilot Plant, El Bijouth St., Dokki, Cairo, Egypt 12622 ; Cenian, Adam : Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, PolandAuthors
Keywords
dark fermentation ; hydrogen production ; wheat straw ; boiled potato wastes ; micro-aeration ; inoculum stressingDivisions of PAS
Nauki TechniczneCoverage
3-13Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringBibliography
Achinas S., Li Y., Achinas V., Euverink G.J.W., 2019. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies, 12, 2311. DOI: 10.3390/en12122311.Aly S.S., Imai T., Hassouna M.S., Kim Nguyen D.M., Higuchi T., Kanno A., Yamamoto K., Akada R., Sekine M., 2018. Identification of factors that accelerate hydrogen production by Clostridium butyricum RAK25832 using casamino acids as a nitrogen source. Int. J. Hydrogen Energy, 43, 5300–5313. DOI: 10.1016/j.ijhydene.2017.08.171.
Bartacek J., Zabranska J., Lens P.N.L., 2007. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod. Biorefin., 1, 201–214. DOI: 10.1002/bbb.17.
Bundhoo Z.M.A., 2019. Potential of bio-hydrogen production from dark fermentation of crop residues: A review. Int. J. Hydrogen Energy, 44, 17346–17362. DOI: 10.1016/j.ijhydene.2018.11.098.
Chaganti S.R., Kim D.H., Lalman J.A., 2012. Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renewable Energy, 48, 117–121. DOI: 10.1016/j.renene.2012.04.015.
Chi C.H., Chen K.W., Huang J.J., Chuang Y.C., Wu M.H., 1995. Gas composition in Clostridium septicum gas gangrene. J. Formos. Med. Assoc., 94, 757–759.
De Cicco A., Jeanty J.-C., 2017. The EU potato sector – statistics on production, prices and trade – Statistics Explained. Statistic Explained. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title= The_EU_potato_sector_-_statistics_on_production,_prices_and_trade.
Dessě P., Lakaniemi A.M., Lens P.N.L., 2017. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res., 115, 120–129. DOI: 10.1016/j.watres.2017.02.063.
Gallipoli A., Braguglia C.M., Gianico A., Montecchio D., Pagliaccia P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci., 89, 167–179. DOI: 10.1016/j.jes.2019.10.016.
Garcia-Bernet D., Steyer J.-P., Bernet N., 2017. Traitement anaérobie des effluents industriels liquides Traitement anaérobie des effluents industriels liquides. Techniques de l’Ingénieur, Réf : J3943 v2.
García Depraect O., Muńoz R., van Lier J.B., Rene E.R., Diaz-Cruces V.F., León Becerril E., 2020. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour. Technol., 307, 123160. DOI: 10.1016/j.biortech.2020.123160.
Han W., Ye M., Zhu A.J., Zhao H.T., Li Y.F., 2015. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol., 191, 24–29. DOI: 10.1016/j.biortech.2015.04.120.
Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172–184. DOI: 10.1016/j.ijhydene.2006.08.014.
Hernández C., Alamilla-Ortiz Z.L., Escalante A.E., Navarro-Díaz M., Carrillo-Reyes J., Moreno-Andrade I., Valdez- Vazquez I., 2019. Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. Int. J. Hydrogen Energy, 44, 13126– 13134. DOI: 10.1016/j.ijhydene.2019.03.124.
Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K., 2015. Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable Sustainable Energy Rev., 44, 728–737. DOI: 10.1016/j.rser. 2015.01.042.
Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A., 2010. Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int. J. Hydrogen Energy, 35, 8536–8543. DOI: 10.1016/j.ijhydene.2010.02.063.
Leszczyński, W., 2000. Jakość ziemniaka konsumpcyjnego. Żywność, Nauka, Technologia, Jakość, Supl., 4(25), 5–27.
Li Y., Zhang Q., Deng L., Liu Z., Jiang H., Wang F., 2018. Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Appl. Microbiol. Biotechnol., 102, 4231–4242. DOI: 10.1007/s00253-018-8882-z.
Moriarty K., 2013. Feasibility study of anaerobic digestion of food waste in St. Bernard, Louisiana. A study prepared in partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting renewable energy on potentially contaminated land and mine sites. National Renewable Energy Laboratory (NREL), Technical Report, NREL/TP-7A30-57082. DOI: 10.2172/1067946.
Nasirian N., Almassi M., Minaei S., Widmann R., 2011. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energy, 36, 411–420. DOI: 10.1016/j.ijhydene.2010.09.073.
Paillet F., Maron, A., Moscovi, R., Steyer J.P., Tapia-Venegas E., Bernet N., Trably E., 2019. Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int. J. Hydrogen Energy, 44, 17802– 17812. DOI: 10.1016/j.ijhydene.2019.05.082.
Patel A.K., Debroy A., Sharma S., Saini R., Mathur A., Gupta R., Tuli D.K., 2015. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour. Technol., 175, 291–297. DOI: 10.1016/j.biortech.2014.10.110.
Sekoai P.T., Ayeni A.O., Daramola M.O., 2019. Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valorization, 10, 1177–1189. DOI: 10.1007/s12649-017-0136-2.
Si B.C., Li J.M., Zhu Z.B., Zhang Y.H., Lu J.W., Shen R.X., Zhang C., 2016. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via twostage highrate anaerobic reactors. Biotechnol. Biofuels, 9, 254. DOI: 10.1186/s13068-016-0666-z.
Słupek E., Kucharska K., Ge˛bicki J., 2019. Alternative methods for dark fermentation course analysis. SN Appl. Sci., 1, 469. DOI: 10.1007/s42452-019-0488-2.
Sołowski G., Konkol I., Cenian A., 2019a. Perspectives of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecol. Chem. Eng. S, 26, 255–263. DOI: 10.1515/eces-2019-0031.
Sołowski G., Konkol, I., Hrycak B., Czylkowski D., 2019b. Hydrogen and methane production under conditions of anaerobic digestion of key-lime and cabbage wastes. Agritech, 39(3), 243–250. DOI: 10.22146/agritech.35848.
Sołowski G., Konkol I., Cenian A., 2020a. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Cleaner Prod., 267, 121721. DOI: 10.1016/j.jclepro.2020.121721.
Sołowski G., Konkol I., Cenian A., 2020b. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy, 138, 105576. DOI: 10.1016/j.biombioe.2020.105576.
Woodward J., Orr M., Cordray K., Greenbaum E., 2000. Enzymatic production of biohydrogen. Nature, 405, 1014–1015. DOI: 10.1038/35016633.
Date
2021.04.08Type
ArticleIdentifier
DOI: 10.24425/cpe.2021.137335Editorial Board
Editorial Board
Ali Mesbah, UC Berkeley, USA 0000-0002-1700-0600
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland 0000-0002-2847-8992
Anna Trusek, Wrocław University of Science and Technology, Poland 0000-0002-3886-7166
Bettina Muster-Slawitsch, AAE Intec, Austria 0000-0002-5944-0831
Daria Camilla Boffito, Polytechnique Montreal, Canada 0000-0002-5252-5752
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland 0000-0002-2924-7360
Dorota Antos, Rzeszów University of Technology, Poland 0000-0001-8246-5052
Evgeny Rebrov, University of Warwick, UK 0000-0001-6056-9520
Georgios Stefanidis, National Technical University of Athens, Greece 0000-0002-4347-1350
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland 0000-0001-5378-3115
Johan Tinge, Fibrant B.V., The Netherlands 0000-0003-1776-9580
Katarzyna Bizon, Cracow University of Technology, Poland 0000-0001-7600-4452
Katarzyna Szymańska, Silesian University of Technology, Poland 0000-0002-1653-9540
Marcin Bizukojć, Łódź University of Technology, Poland 0000-0003-1641-9917
Marek Ochowiak, Poznań University of Technology, Poland 0000-0003-1543-9967
Mirko Skiborowski, Hamburg University of Technology, Germany 0000-0001-9694-963X
Nikola Nikacevic, University of Belgrade, Serbia 0000-0003-1135-5336
Rafał Rakoczy, West Pomeranian University of Technology, Poland 0000-0002-5770-926X
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong 0000-0001-7444-2678
Tom van Gerven, KU Leuven, Belgium 0000-0003-2051-5696
Tomasz Sosnowski, Warsaw University of Technology, Poland 0000-0002-6775-3766