Details

Title

The catalyst-free polytransesterification for obtaining linear PGS optimized with use of 22 factorial design

Journal title

Chemical and Process Engineering

Yearbook

2021

Volume

vol. 42

Issue

No 1

Authors

Affiliation

Wrzecionek, Michał : Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland ; Howis, Joanna : Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland ; Marek, Paulina H. : Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland ; Marek, Paulina H. : University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland ; Ruśkowski, Paweł : Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland ; Gadomska-Gajadhur, Agnieszka : Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland

Keywords

poly(glycerol sebacate) ; polycondensation ; optimization

Divisions of PAS

Nauki Techniczne

Coverage

43-52

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Bibliography

Denis P., Wrzecionek M., Gadomska-Gajadhur A., Sajkiewicz P., 2019. Poly(glycerol sebacate)–poly(l-lactide) nonwovens towards attractive electrospun material for tissue engineering. Polymers, 11, 2113. DOI: 10.3390/polym 11122113.
Fernandes B.S., Carlos Pinto J., Cabral-Albuquerque E.C.M., Fialho R.L., 2015. Free-radical polymerization of urea, acrylic acid, and glycerol in aqueous solutions. Polym. Eng. Sci., 55, 1219–1229. DOI: 10.1002/pen.24081.
Gadomska-Gajadhur A., Wrzecionek M., Matyszczak G., Pie˛towski P., Wie˛cław M., Ruśkowski P., 2018. Optimiza- tion of poly(glycerol sebacate) synthesis for biomedical purposes with the design of experiments. Org. Process Res. Dev., 22, 1793–1800. DOI: 10.1021/acs.oprd.8b00306.
Gao J., Crapo P.M., Wang Y., 2006. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng., 12, 917–925. DOI: 10.1089/ten.2006.12.917.
Godinho B., Gama N., Barros-Timmons A., Ferreira A., 2018. Enzymatic synthesis of poly(glycerol sebacate) pre- polymer with crude glycerol, by-product from biodiesel prodution. AIP Conference Proceedings, 1981, 020031. DOI: 10.1063/1.5045893.
Harris J.J., Lu S., Gabriele P., 2018. Commercial challenges in developing biomaterials for medical device devel- opment. Polym. Int., 67, 969–974. DOI: 10.1002/pi.5590.
Higuchi T., Kinoshita A., Takahashi K., Oda S., Ishikawa I., 1999. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontology, 70, 1026–1031. DOI: 10.1902/jop.1999.70.9.1026.
Kafouris D., Kossivas F., Constantinides C., Nguyen N.Q., Wesdemiotis C., Patrickios C.S., 2013. Biosourced am- phiphilic degradable elastomers of poly(glycerol sebacate): synthesis and network and oligomer characterization. Macromolecules, 46, 622–630. DOI: 10.1021/ma3016882.
Kemppainen J.M., Hollister S.J., 2010. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J. Biomed. Mater. Res. Part A, 94A, 9–18. DOI: 10.1002/jbm.a.32653.
Kharaziha M., Nikkhah M., Shin S.-R., Annabi N., Masoumi N., Gaharwar A.K., Camci-Unal G., Khademhosseini A., 2013. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 34, 6355–6366. DOI: 10.1016/J.BIOMATERIALS.2013.04.045.
Kokubo S., Fujimoto R., Yokota S., Fukushima S., Nozaki K., Takahashi K., Miyata K., 2003. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials, 24, 1643–1651. DOI: 10.1016/S0142-9612(02)00551-3.
Kumar A., Khan A., Malhotra S., Mosurkal R., Dhawan A., Pandey M.K., Singh B.K., Kumar R., Prasad A.K., Sharma S.K., Samuelson L.A., Cholli A.L., Len C., Richards N.G.J., Kumar J., Haag R., Watterson A.C., Parmar V.S., 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev., 45, 6855–6887. DOI: 10.1039/C6CS00147E.
Landim L.B., Pinto J.C., Cabral-Albuquerque E.C.M., Cunha S., Fialho R.L., 2018. Synthesis and characterization of copolymers of urea-succinic acid-ethylene glycol and copolymers of urea-succinic acid-glycerol. Polym. Eng. Sci. 58, 1575–1582. DOI: 10.1002/pen.24746.
Larsson A., Israelsson M., Lind F., Seemann M., Thunman H., 2014. Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system. Energy Fuels, 28, 2632–2644. DOI: 10.1021/ef500132p.
Li C.J., Trost B.M., 2008. Green chemistry for chemical synthesis. PNAS, 105, 13197–13202. DOI: 10.1073/pnas.0804348105.
Li Y., Cook W.D., Moorhoff C., Huang W.-C., Chen Q.-Z., 2013. Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym. Int., 62, 534–47. DOI: 10.1002/pi.4419.
Liu G., Hinch B., Beavis A.D., 1996. Mechanisms for the transport of alpha,omega-dicarboxylates through the mitochondrial inner membrane. J. Biol. Chem., 271, 25338–25344. DOI: 10.1074/jbc.271.41.25338.
Liu L.L., Yi F.C., Cai W., 2012. Synthesis and shape memory effect of poly(glycerol-sebacate) elastomer. Adv. Mater. Res., 476–478, 2141–2144. DOI: 10.4028/www.scientific.net/AMR.476-478.2141.
Liu Q., Tian M., Ding T., Shi R., Feng Y., Zhang L., Chen D., Tian W., 2007. Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method. J. Appl. Polym. Sci., 103, 1412–19. DOI: 10.1002/app.24394.
Loh X.J., Abdul Karim A., Owh C., 2015, Poly(glycerol sebacate) biomaterial: synthesis and biomedical applica- tions. J. Mater. Chem. B, 3, 7641–7652. DOI: 10.1039/c5tb01048a.
Martina M., Hutmacher D.W., 2007. Biodegradable polymers applied in tissue engineering research: a review. Polym. Int., 56, 145–157. DOI: 10.1002/pi.2108.
Otera J., 1993. Transesterification. Chem. Rev., 93, 1449–1470. DOI: 10.1021/cr00020a004.
Rai R., Tallawi M., Grigore A., Boccaccini A.R., 2012. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Prog. Polym. Sci., 37, 1051–1078. DOI: 10.1016/j.progpolymsci. 2012.02.001.
Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Ramakrishna S., 2011. Poly(glycerol seba- cate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng. Part A, 17, 1363– 1373. DOI: 10.1089/ten.tea.2010.0441.
Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Sridhar R., Ramakrishna S., 2012. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, 23, 385102. DOI: 10.1088/0957-4484/23/38/385102.
Sant S., Hwang C.M., Lee S.-H., Khademhosseini A., 2011. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J. Tissue Eng. Regener. Med., 5, 283–291. DOI: 10.1002/term.313.
Saudi A., Rafienia M., Zargar Kharazi A., Salehi H., Zarrabi A., Karevan M., 2019. Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: synthesis, electrospinning, and characterization. Polym. Adv. Technol., 30, 1427–1440. DOI: 10.1002/pat.4575.
Slavko E., Taylor M.S., 2017. Catalyst-controlled polycondensation of glycerol with diacyl chlorides: linear polyesters from a trifunctional monomer. Chem. Sci., 8, 7106–7111. DOI: 10.1039/C7SC01886J.
Wang Y., Ameer G.A., Sheppard B.J., Langer R., 2002. A tough biodegradable elastomer. Nat. Biotechnol., 20, 602–606. DOI: 10.1038/nbt0602-602.
Wrzecionek M., Ruśkowski P., Gadomska-Gajadhur A., Gadomska-Gajadhur A., 2021. Mathematically described preparation process of poly(glycerol succinate) resins and elastomers—meeting science with industry. Polym. Adv. Technol., 32, 2042–2051. DOI: 10.1002/pat.5233.
Xu B., Cook W.D., Zhu C., Chen Q., 2016. Aligned core/shell electrospinning of poly(glycerol sebacate)/poly(l- lactic acid) with tuneable structural and mechanical properties. Polym. Int., 65, 423–429. DOI: 10.1002/pi.5071.

Date

2021.04.08

Type

Article

Identifier

DOI: 10.24425/cpe.2021.137338

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×