Details

Title

Interaction Principle of Rock-Bolt Structure and Rib Control in Large Deformation Roadways

Journal title

Archives of Mining Sciences

Yearbook

2021

Volume

vol. 66

Issue

No 2

Affiliation

Yuan, Xun : Sichuan University – The Hong Kong Polytechnic University, Institute for Disaster Managementand Reconstruction, 610207 Chengdu, China ; Yang, Shuangsuo : Taiyuan University of Technology, College of Mining Engineering, 030024 Taiyuan, China

Authors

Keywords

rock-bolt structure ; fluctuation balance law ; large deformation roadway ; thick-board support

Divisions of PAS

Nauki Techniczne

Coverage

227-248

Publisher

Committee of Mining PAS

Bibliography

[1] P.K. Mandal, A.J. Das, N. Kumar, R. Bhattacharjee, S. Tewari, A. Kushwaha, Assessment of roof convergence during driving roadways in underground coal mines by continuous miner. Int. J. Rock Mech. Min. Sci. 108, 169-178 (2018).
[2] C .C. Li, G. Kristjansson, A.H. Høien, Critical embedment length and bond strength of fully encapsulated rebar rockbolts. Tunn. Undergr. Space Technol. 59, 16-23 (2016).
[3] C .G. Zhang, I. Canbulat, F. Tahmasebinia, B. Hebblewhite, Assessment of energy release mechanisms contributing to coal burst. Int. J. Min. Sci. Technol. 27 (1), 43-47 (2017).
[4] Q. Deng, Y Wang, M. Liu, J. Wei, Statistic analysis and enlightenment on coal mine accident of China from 2001~2013 periods. Coal Technol. 9, 73-75 (2014). (in Chinese).
[5] F.D. Gearhart, M.K. Mohamed, Vertical load capacities of roof truss cross members. Int. J. Min. Sci. Technol. 26 (3), 517-520 (2016).
[6] C .C. Li, G. Stjern, A. Myrvang, A review on the performance of conventional and energy-absorbing rockbolts. J. Rock Mech. Geotech. Eng. 6 (4), 315-327 (2014).
[7] S. Ding, H. Jing, K. Chen, G. Xu, B. Meng, Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer. Int. J. Min. Sci. Technol. 27 (3), 573-580 (2017).
[8] H. Zhang, X. Miao, G. Zhang, Y. Wu, Y. Chen, Non-destructive testing and pre-warning analysis on the quality of bolt support in deep roadways of mining districts. Int. J. Min. Sci. Technol. 27 (6), 989-998 (2017).
[9] R. Šňupárek, P. Konečný, Stability of roadways in coalmines alias rock mechanics in practice. J. Rock Mech. Geotech. Eng. 2, 281-288 (2010).
[10] K. Yang, G. Xie, G. Tan, Experimental investigation on behaviors of bolt-supported rock strata surrounding an entry in large dip coal seam. J. Rock Mech. Geotech. Eng. 3 (1), 445-449 (2011).
[11] C . Zhou, Y. Chen, Q. Jiang, W. Lu, A generalized multi-field coupling approach and its application to stability and deformation control of a high slope. J. Rock Mech. Geotech. Eng. 3 (3), 193-206 (2011).
[12] H. Kang, Y. Wu, F. Gao, Deformation characteristics and reinforcement technology for entry subjected to mininginduced stresses. J. Rock Mech. Geotech. Eng. 3 (3), 207-219 (2011).
[13] Q. Chang, H. Zhou, Z. Xie, S. Shen, Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control. Int. J. Min. Sci. Technol. 23 (3), 323-328 (2013).
[14] G. Armand, A. Noiret, J. Zghondi, D. M. Seyedi, Short- and long-term behaviors of drifts in the Callovo-Oxfordian clay stone at the Meuse/Haute-Marne Underground Research Laboratory. J. Rock Mech. Geotech. Eng. 5 (3), 221-230 (2013).
[15] I. Khalymendyk, A. Brui, A. Baryshnikov, Usage of Cable Bolts for Gateroad Maintenance in Soft Rocks. J. Sustainable Min. 13 (3), 1-6 (2014).
[16] C .C. Li, Principles of rockbolting design. J. Rock Mech. Geotech. Eng. 9 (3), 396-414 (2017).
[17] R. Frith, G. Reed, M. McKinnon, Fundamental principles of an effective reinforcing roof bolting strategy in horizontally layered roof strata and areas of potential improvement. Int. J. Min. Sci. Technol. 28 (1), 67-77 (2018).
[18] T. Wu, C. Chen, H. Jun, R. Ting, Effect of bolt rib spacing on load transfer mechanism. Int. J. Min. Sci. Technol. 27 (3), 431-434 (2017).
[19] Y. Heritage, Mechanics of rib deformation Observations and monitoring in Australian coal mines. Int. J. Min. Sci. Technol. 29 (1), 119-129 (2019).
[20] G. Wu, W. Yu, J. Zuo, S. Du, Experimental and theoretical investigation on mechanisms performance of the rockcoal- bolt (RCB) composite system. Int. J. Min. Sci. Technol. 30 (6), 759-768 (2020).
[21] A. Sjölander, R. Hellgren, R. Malm, A. Ansell, Verification of failure mechanisms and design philosophy for a bolt-anchored and fiber-reinforced shotcrete lining. Eng Fail Anal. 116, 104741 (2020).
[22] H. Kang, J. Yang, X Meng, Tests and analysis of mechanical behaviors of rock bolt components for China’s coal mine roadways. J. Rock Mech. Geotech. Eng. 7 (1), 14-26 (2015).
[23] S. Sinha, Y.P. Chugh, Validation of critical strain technique for assessing stability of coal mine intersections and its potential for development of roof control plans. J. Rock Mech. Geotech. Eng. 10 (2), 380-389 (2018).
[24] R. Singh, S. Ram, A.K. Singh, A. Kumar, R. Kumar, A.K. Singh, Rock Mechanics Considerations for Roof Bolt- Based Breaker Line Design. Procedia Eng. 191, 551-559 (2017).
[25] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Eng. 191, 575-582 (2017).
[26] P. Singh, A.J.S. (Sam) Spearing, K.V. Jessu, P.C.P. da S. Ribeiro, Establishing the need to model the actual state of stress along rock bolts. Int. J. Min. Sci. Technol. 30 (3), 279-286 (2020).
[27] P.C. Pinazzi, A.J.S. (Sam) Spearing, K.V. Jessu, P. Singh, R. Hawker, Mechanical performance of rock bolts under combined load conditions. Int. J. Min. Sci. Technol. 30 (2), 167-177 (2020).
[28] K. Mohamed, G. Rashed, Z.R. Guzina, Loading characteristics of mechanical rib bolts determined through testing and numerical modeling. Int. J. Min. Sci. Technol. 30 (1), 17-24 (2020).
[29] R. Abousleiman, G. Walton, S. Sinha, Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method. Int. J. Min. Sci. Technol. 30 (1), 123-129 (2020).
[30] R. Das, T. Nath Singh, Effect of rock bolt support mechanism on tunnel deformation in jointed rockmass: A numerical approach. Undergr. Space (2020).
[31] W. Masny, Powered support in dynamic load conditions – numerical analysis. Arch. Min. Sci. 65 (3), 453-468 (2020).
[32] W. Li, N. Yang, B. Yang, H. Ma, T. Li, Q. Wang, G. Wang, Y. Du, M. Zhao, An improved numerical simulation approach for arch-bolt supported tunnels with large deformation. Tunn. Undergr. Space Technol. 77, 1-12 (2018).
[33] H. Lin, Z. Xiong, T. Liu, R. Cao, P. Cao, Numerical simulations of the effect of bolt inclination on the shear strength of rock joints. Int. J. Rock Mech. Min. Sci. 66, 49-56 (2014).
[34] S. Luo, W. Liang, Optimization of roadway support schemes with likelihood-based MABAC method. Appl. Soft Comput. 80, 80-89 (2019).
[35] L. Zhang, J. Liu, X. Cao, F. Yan, Mechanism and application of concrete-filled steel tubular support in deep and high stress roadway. Build. Mater. 186, 233-246 (2018).
[36] R. Cao, P. Cao, H. Lin, Support technology of deep roadway under high stress and its application. Int. J. Min. Sci. Technol. 26, 787-793 (2016).
[37] Q. Meng, L. Han, Y. Chen, J. Fan, S. Wen, L. Yu, H. Li, Influence of dynamic pressure on deep underground soft rock roadway support and its application. Int. J. Min. Sci. Technol. 26, 903-912 (2016).
[38] W. Huang, Q. Yuan, Y. Tan, J. Wang, G. Liu, G. Qu, C. Li, An innovative support technology employing a concretefilled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field. Tunn. Undergr. Space Technol. 73, 26-36 (2018).
[39] G. Wu, S. Jia, W. Chen, J. Yuan, H. Yu, W. Zhao, An anchorage experimental study on supporting a roadway in steeply inclined geological formations. Tunn. Undergr. Space Technol. 82, 125-134 (2018).
[40] S. Van Duin, L. Meers, P. Donnelly, I. Oxley, Automated bolting and meshing on a continuous miner for roadway development. Int. J. Min. Sci. Technol. 23 (1), 55-61 (2013).
[41] M. Van Dyke, T. Klemetti, J. Wickline, Geologic data collection and assessment techniques in coal mining for ground control. Int. J. Min. Sci. Technol. 30 (1), 131-139 (2020).
[42] T.M. Klemetti, M. Van Dyke, I.B. Tulu, Deep cover bleeder entry performance and support loading: A case study. Int. J. Min. Sci. Technol. 28 (1), 85-93 (2018).
[43] J. Booth, A.M. Marshall, R. Stace, Probabilistic analysis of a coal mine roadway including correlation control between model input parameters. Comput. Geotech. 74, 151-162 (2016).
[44] P. Małkowski, The impact of the physical model selection and rock mass stratification on the results of numerical calculations of the state of rock mass deformation around the roadways. Tunn. Undergr. Space Technol. 50, 365-375 (2015).
[45] F. Ma, H. Yang, M. Zhan, Plastic deformation behaviors and their application in power spinning process of conical parts with transverse inner rib. J. Mater. Process. Technol. 210 (1), 180-189 (2010).
[46] L. Thenevin, B. Martín, F.H. Hassen, J. Schleifer, Z. Lubosik, A. Wrana, Laboratory pull-out tests on fully grouted rock bolts and cable bolts: Results and lessons learned. J. Rock Mech. Geotech. Eng. 9, 843-855 (2017).
[47] I. Canbulat, J. Hoelle, J. Emery, Risk management in open cut coal mines. Int. J. Min. Sci. Technol. 23 (3), 369-374 (2013).
[48] F.M. Mohee, A.A. Mayah, Effect of barrel, wedge material and thickness on composite plate anchor performance through analytical, finite element, experimental and 3D prototype investigations. Eng. Struct. 175, 138-154 (2018).
[49] V . Saberi, M. Gerami, A. Kheyoddin, Comparison of bolted end plate and T-stub connection sensitivity to component thickness. J. Constr. Steel. Res. 98, 134-145 (2014).
[50] S.S. Yang, The theory of thick anchor plate for anchoring and supporting coal mine roadways. Proceedings of 2010 Academic Annual Conference of Mining Professional Committee of China Coal Society 5 (2010). (in Chinese).
[51] W. Witkowski, M. Rucka, J. Chróścielewski, K. Wilde, On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem. Anal. Des. 55, 31-41(2012).
[52] S. Burzyński, J. Chróścielewski, K. Daszkiewicz, W. Witkowski, Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B-Eng. (2016).
[53] E.H. Twizell, A.G. Bratsos, J.C. Newby, A finite-difference method for solving the cubic Schrödinger equation. Math. Comput. Simul. 43 (1), 67-75 (1997).
[54] G. Papakaliatakis, T.E. Simos, A finite difference method for the numerical solution of fourth-order differential equations with engineering applications. Comput. Struct. 65 (4), 491-495 (1997).
[55] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems. (2nd ed.). Interscience Pub., New York (1967).
[56] S. Bock, New open-source ANSYS-SolidWorks-FLAC3D geometry conversion programs. J. Sustainable Min. 14 (3), 124-132 (2015).
[57] S.S. Yang, M.G. Qian, L. X. Kang, X.R. Jia, The theory of fluctuant equilibrium of interaction between surrounding rock and support of roadway. J. Taiyuan University of Technology 32 (4), 339-343 (2001). (in Chinese).
[58] M. Van Dyke, W.H. Su, J. Wickline, Evaluation of seismic potential in a longwall mine with massive sandstone roof under deep overburden. Int. J. Min. Sci. Technol. 28 (1), 115-119 (2018).
[59] H. Kang, L. Wu, F. Gao, H. Lv, J. Li, Field study on the load transfer mechanics associated with longwall coal retreat mining. Int. J. Rock Mech. Min. Sci. 124, 104141 (2019).
[60] Y. Wu, H. Kang, J. Wu, F. Gao, Deformation and support of roadways subjected to abnormal stresses. Procedia Eng. 26, 665-674 (2011).
[61] N . Bahrani, J. Hadjigeorgiou, Explicit reinforcement models for fully-grouted rebar rock bolts. J. Rock Mech. Geotech. Eng. 9, 267-280 (2017).
[62] Z. Niedbalski, T. Majcherczyk, Indicative assessment of design efficiency of mining roadways. J. Sustainable Min. 17, 131-138 (2018).
[63] R. Singh, P.K. Mandal, A.K. Singh, T.N. Singh, Cable-bolting-based semi-mechanised depillaring of a thick coal seam. Int. J. Rock Mech. Min. Sci. 18, 245-257 (2001).
[64] K. Rakesh, M.A. Kumar, S. Arun Kumar, S. Amit Kumar, R. Sahendra, S. Rajendra, Depillaring of total thickness of a thick coal seam in single lift using cable bolts: A case study. Int. J. Min. Sci. Technol. 26, 223-233 (2016).
[65] Y. Cai, T. Esaki, Y. Jiang, A rock bolt and rock mass interaction model. Int. J. Rock Mech. Min. Sci. 41, 1055-1067 (2004).
[66] M. Moosavi, R. Grayeli, A model for cable bolt-rock mass interaction: Integration with discontinuous deformation analysis (DDA) algorithm. Int. J. Rock Mech. Min. Sci. 43, 661-670 (2006).
[67] J.P. Zuo, J.H. Wen, Y.D. Li, Y. J. Sun, J.T. Wang, Y.Q. Jiang, L. Liu, Investigation on the interaction mechanism and failure behavior between bolt and rock-like mass. Tunn. Undergr. Space Technol. 93, 103070 (2019).
[68] R. Kumar, P.K. Mandal, A. Narayan, A.J. Das, Evaluation of load transfer mechanism under axial loads in a novel coupler of dual height rock bolts. Int. J. Min. Sci. Technol. (2021).
[69] N . Che, H. Wang, M. Jiang, DEM investigation of rock/bolt mechanical behaviour in pull-out tests. Particuology, (2020).
[70] L. Cui, J.J. Zheng, Q. Sheng, Y. Pan, A simplified procedure for the interaction between fully-grouted bolts and rock mass for circular tunnels. Comput. Geotech. 106, 177-192 (2019).
[71] X. Wu, Y. Jiang, Z. Guan, G. Wang, Estimating the support effect of energy-absorbing rock bolts based on the mechanical work transfer ability. Int. J. Rock Mech. Min. Sci. 103, 168-178 (2018).
[72] Y. Cai, Y. Jiang, I. Djamaluddin, T. Iura, T. Esaki, An analytical model considering interaction behavior of grouted rock bolts for convergence-confinement method in tunneling design. Int. J. Rock Mech. Min. Sci. 76, 112-126 (2015).

Date

2021.06.28

Type

Article

Identifier

DOI: 10.24425/ams.2021.137459
×