Details
Title
Underground Mine Gas Explosion Accidents and Prevention Techniques – An overviewJournal title
Archives of Mining SciencesYearbook
2021Volume
vol. 66Issue
No 2Affiliation
Song, Wanting : China University of Mining and Technology, College of Safety Engineering, Xuzhou 221116, China ; Cheng, Jianwei : China University of Mining and Technology, College of Safety Engineering, Xuzhou 221116, China ; Wang, Wenhe : Chongqing University of Science and Technology, College of Safety Engineering, Chongqing 401331, China ; Qin, Yi : Chongqing University of Science and Technology, College of Safety Engineering, Chongqing 401331, China ; Wang, Zui : China University of Mining and Technology, College of Safety Engineering, Xuzhou 221116, China ; Borowski, Marek : AGH University of Science and Technology, Faculty of Mining Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland ; Wang, Yue : Xinjiang Institute of Engineering, College of Safety Science and Engineering, Urumqi 830000, China ; Tukkaraja, Purushotham : South Dakata School of Mines and Technology, Department of Mining Engineering and Management, Rapid City, SD, 57701, United StatesAuthors
Keywords
Coal mine explosion ; Explosion protections ; control ; OverviewDivisions of PAS
Nauki TechniczneCoverage
297-312Publisher
Committee of Mining PASBibliography
[1] N . Gao, Y. Zhang, Y.T. Hu, Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures. Explos. Shock Waves, 37 (3), 453-458 (2017). DOI: https://doi.org/10.11883/1001- 1455(2017)03-0453-06[2] S.K. Kundu, J. Zanganeh, D. Eschebach, N. Mahinpey, B. Moghtaderi, Explosion characteristics of methane-air mixtures in a spherical vessel connected with a duct. Process Saf. Environ. 111, 85-93 (2017). DOI: https://doi. org/10.1016/j.psep.2017.06.014
[3] S.K. Kundu, J. Zanganeh, B. Moghtaderi, A review on understanding explosions from methane-air mixture. J. Loss Prevent. Proc. 40, 507-523 (2016). DOI: https://doi.org/10.1016/j.jlp.2016.02.004
[4] B.Q. Lin, Q. Ye, C. Zhai, C.G. Jian, The propagation rule of methane explosion in bifurcation duct. J. China Coal Soc. 33 (2), 136-139 (2008).
[5] B.Y. Jiang, B.Q. Lin, C.J. Zhu, C. Zhai, Z.W. Li, Numerical Simulation on Shock Wave Propagation Characteristics of Gas Explosion in Parallel Roadway. J. Combust. Sci. Technol. 17 (3), 250-254 (2011).
[6] B. Lewis, G. V. Elbe, Combustion, flames & explosions of gases. Academic Press Inc. 73 (1), 107-108 (1987). DOI: https://doi.org/10.1016/B978-1-4832-3155-6.50009-7
[7] Q. Zhang, L. Pang, H.M. Liang, Effect of scale on the explosion of methane in air and its shockwave. J. Loss Prevent. Proc. 24 (1), 43-48 (2011). DOI: https://doi.org/10.1016/j.jlp.2010.08.011
[8] I . Ivanov, A.M. Baranov, S. Akbari, S. Mironov, E. Karpova, Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition. Sensors & Actuators: B. Chemical. 293, 273-280 (2019). DOI: https://doi.org/10.1016/j.snb.2019.05.001
[9] C.J. Wang, S.Q. Yang, X.W. Li, Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Process Saf. Environ. 118, 296-306 (2018). DOI: https://doi.org/10.1016/j.psep.2018.06.028
[10] T . Tomizuka, K. Kuwana, T. Mogi, R. Dobashi, M. Koshi, A study of numerical hazard prediction method of gas explosion. Int. J. Hydrogen Energ. 38 (12), 5176-5180 (2013). DOI: https://doi.org/10.1016/j.ijhydene.2013.02.029
[11] L . Pang, T. Wang, Y.S. Xie, W. Yao, Q. Zhang, Study on Hazard Effects of Gas Explosion in Coal Laneways. Adv. Mater. Res. 402, 846-849 (2012). DOI: https://doi.org/10.4028/www.scientific.net/AMR.402.846
[12] Z.H. He, X.B. Li, L.M. Liu, W.J. Zhu, The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel. 124, 85-90 (2014). DOI: https://doi.org/10.1016/j.fuel.2014.01.070
[13] G . Cui, S. Wang, J.G. Liu, Z.X. Bi, Z.L. Li, Explosion characteristics of a methane/air mixture at low initial temperatures. Fuel. 234, 886-893 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.07.139
[14] X.F. Meng, Q.L. Liu, X.C. Li, X.X. Zhou, Risk assessment of the unsafe behaviours of humans in fatal gas explo-sion accidents in China’s underground coal mines. J. Clean. Prod. 210, 970-976 (2019). DOI: https://doi.org/10.1016/j.jclepro.2018.11.067
[15] J.W. Cheng, J. Mei, S.Y. Peng, C. Qi, Y. Shi, Comprehensive consultation model for explosion risk in mine atmosphere-CCMER. Safety Sci. 120, 798-812 (2019). DOI: https://doi.org/10.1016/j.ssci.2019.07.035
[16] J.W. Cheng, C. Qi , S.Y. Li, Modelling mine gas explosive pattern in underground mine gob and overlying strata. Int. J. Oil, Gas Coal Technol. 22 (4), 554-577 (2019). DOI: https://doi.org/10.1504/IJOGCT.2019.10025153
[17] J.W. Cheng, C. Qi, W.D. Lu, K.X. Qi, Assessment Model of Stata Permeability Change Due to Underground Longwall Mining. Environ. Eng. Manag. J. 18 (6), 1311-1325 (2019). DOI: https://doi.org/10.30638/eemj.2019.125
[18] C. Geretto, S.C.K. Yuen, G. Nurick, An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading. Int. J. Impact Eng. 79, 32-44 (2015). DOI: https://doi. org/10.1016/j.ijimpeng.2014.08.002
[19] K . Ghosh, S. Wang, Evolution of underground coal mine explosion law in Australia, 1887-2007. J. Australas. Min. Hist. 12, 81-97 (2014).
[20] S.G. Davis, D. Engel, K.V. Wingerden, Complex Explosion Development in Mines: Case Study – 2010 Upper Big Branch Mine Explosion. Process Saf. Prog. 34 (3), 286-303 (2015). DOI: https://doi.org/10.1002/prs.11710
[21] J.W. Cheng, L. Wei, Failure Modes and Manifestations in a Mine Gas Explosion Disaster. J. Failure Anal. Prev. 14 (8), 601-609 (2014). DOI: https://doi.org/10.1007/s11668-014-9852-0
[22] S.Y. Li, The Unjust Soul Devoured by Gas – Following the “8 · 18” Major Gas Explosion in Baijiagou Coal Mine, Faku County, Liaoning Province. Hunan Secur. Disaster Prev. 02 (1) 50-53 (2009).
[23] G .J. Moridis, M.T. Reagan, A.F. Queiruga, S. Kim, System response to gas production from a heterogeneous hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea. J. Petrol. Sci. Eng. 178, 655-665 (2019). DOI: https://doi.org/10.1016/j.petrol.2019.03.058
[24] E.Y. Wang, P. Chen, Z.T. Liu, Y.J. Liu, Z.H. Li, X.L. Li, Fine detection technology of gas outburst area based on direct current method in Zhuxianzhuang Coal Mine, China. Safety Sc. 115, 12-18 (2019). DOI: https://doi.org/10.1016/j.ssci.2019.01.018
[25] J.J. Zhang, D. Cliff, K.L. Xu, G. You, Focusing on the patterns and characteristics of extraordinarily severe gas explosion accidents in Chinese coal mines. Process Saf. Environ. 117, 390-398 (2018). DOI: https://doi.org/10.1016/j.psep.2018.05.002
[26] Y.P. Cao, Study on mechanism and prevention of gas accumulation in mine intermittent ventilation. PhD thesis, China University of Mining and Techonology. Xuzhou, June.
[27] A.D.S. Gillies, H.W. Wu, Emerging trends and adaptations of standards for stoppings and seals in Australian Mines. 303-314 (2000).
[28] B. Cheng, X. Cheng, Z.Y. Zhai, C.W. Zhang, J.L. Chen, Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network. Int. J. Distrib. Sens. Networks. 10 (8), 1329-1550 (2014). DOI: https://doi.org/10.1155/2014/323127
[29] H .R. Wang, M.S. Wang, Z. Wang, Study of the Theory and Practice of Coal Mine Safety Monitoring Technology. Appl. Mech. Mater. 443, 294-298 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.443.294
[30] X.L. Qin, M.C. Fu, L.H. Li, Research and Implementation of Key Technologies of Goaf Coal Spontaneous Combustion Wireless Monitoring System. Appl. Mech. Mater. 190, 1166-1169 (2012). DOI: https://doi.org/10.4028/ www.scientific.net/AMM.190-191.1166
[31] X. Liu, H.Q. Zhang, Z.H. Zhang, Coal Mine Safety Monitoring System Based on ZigBee. Adv. Mater. Res. 918, 608-611 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMR.981.608
[32] X.Q. Shao, X.M. Ma, The Design of Coal Mine Construction Safety Monitoring System. Appl. Mech. Mater. 174- 177, 3459-3462 (2012). DOI: https://doi.org/10.428/www.scientific.net/AMM.174-177.3459
[33] Y. L. Li, C. K. Zhang, J. Y. Liu, J. Li, Visualization of Mining Monitoring Is the Development Direction of Coal Mine Safety Production. Adv. Mater. Res. 524-527, 391-395 (2012). DOI: https://doi.org/10.4028/www.scientific.net/AMR.524-527.391
[34] J.K. Guo, Y.Y. Zhang, The Reliability Consideration of Coal Mine Safety Production Monitoring System Network. Energy Procedia. 17, 520-527 (2012). DOI: https://doi.org/10.1016/j.egypro.2012.02.130
[35] M.L. Harris, E.S. Weiss, C. Man, M.J. Sapko, G.V. Goodman, Rock dusting considerations in underground coal mines. In 13th US/North American Mine Ventilation Symposium, 2010 MIRARCO-Mining Innovation, Sudbury.
[36] R .M. Zhang, B.S. Nie, X.Q. He, C. Wang, C.H. Zhao, L.C. Dai, Q. Li, X.N. Liu, H.L. Li, Different gas explosion mechanisms and explosion suppression techniques. Procedia Eng. 261, 467-1472 (2011).
[37] C.K. Man, K.A. Teacoach, How does limestone rock dust prevent coal dust explosions in coal mines. Min. Eng. 61 (9), 61-69 (2009).
[38] Y. Luo, D.M. Wang, J.W. Cheng, Effects of rock dusting in preventing and reducing intensity of coal mine explosions. Int. J. Coal. Sci.Technol. 4 (2), 8-15 (2017). DOI: https://doi.org/10.1007/S40789-017-0168-ZZ
[39] M.J. Mcpherson, Subsurface Ventilation and Environmental Engineering, 2012 Chapman & Hall, London.
[40] G .T. Linteris, M.D. Rumminger, V.I. Babushok, Catalytic inhibition of laminar flames by transition metal compounds. Prog. Energ. Combust. 34 (3), 288-329 (2007). DOI: https://doi.org/10.1016/j.pecs.2007.08.002
[41] Y. Koshiba, Y. Takahashi, H. Ohtani, Flame suppression ability of metallocenes (nickelocene, cobaltcene, ferrocene, manganocene, and chromocene. Fire Safety J. 51, 10-17 (2012). DOI: https://doi.org/10.1016/j.firesaf.2012.02.008
[42] X.Y. Cao, J.J. Ren, Y.H. Zhou, Q.J. Wang, X.L. Gao, M.S. Bi, Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. Hazard. Mater. 285, 311-318 (2015). DOI: https://doi.org/10.1016/j.jhazmat.2014.11.016
[43] H . You, M.G. Yu, L.G. Zheng, A. An, Study on Suppression of the Coal Dust/Methane/Air Mixture Explosion in Experimental Tube by Water Mist. Procedia Engineering. 26, 803-810 (2011).
[44] Z.Y. Wu, S.G. Jiang, H. Shao, K. Wang, X.R. Ju, W. Zou, W.Q. Zhang, L.Y. Wang, Experimental study on the feasibility of explosion suppression by vacuum chambers. Safety Sci. 50 (4), 660-667 (2012). DOI: https://doi.org/10.1016/j.ssci.2011.08.055
[45] Z.Y. Wu, S.G. Jiang, L.Y. Wang, H. Shao, K. Wang, W.Q. Zhang, H.W. Wu, W.W. Liang, Experimental study on explosion suppression of vacuum chambers with different scales. Procedia Earth and Planetary Science. 1 (1), 396-401 (2009). DOI: https://doi.org/10.1016/j.proeps.2009.09.063
[46] S.G. Jiang, Z.Y. Wu, Q.H. Li, X.J. He, H. Shao, J.H. Qin, L.Y. Wang, L.M. Hu, B.Q. Lin, Vacuum chamber suppression of gas-explosion propagation in a tunnel. Journal of China University of Mining & Technology. 18 (3), 337-341 (2008). DOI: https://doi.org/10.1016/S1006-1266(08)60071-1
[47] H . Späth, A.S. Yu, N. Dewen, A New Dimension in Coal Mine Safety: ExploSpot, Active Explosion Suppression Technology. Procedia Eng. 26, 2191-2198 (2011). DOI: https://doi.org/10.1016/j.proeng.2011.11.2424
[48] J.F. Wang, J.M. Wu, S. Yu, H. Spath, The Experiment Research of the Powder Jetting Performance for the South Africa HS Active Explosion Suppression System. Procedia Eng. 26, 388-396 (2011). DOI: https://doi.org/10.1016/j.proeng.2011.11.2183
[49] J. Deng, X. Zhu, F.M. Cheng, Research Overview of Dodecafluoro-2-methylpentan-3-one Fire Suppression Agent Used in Gas Explosion Suppressio. Mines. Saf. Coal Mines. 48 (07), 181-183 (2017).
[50] M. Borowski, P. Życzkowski, R. Łuczak, M. Karch, J.W. Cheng, Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions. Energies. 13 (1), 44-58 (2020). DOI : https://doi.org/10.3390/ en13010044
[51] X.X .Zhang, J.W. Cheng, C.L. Shi, X. Xu, M. Borowski, Y. Wang, Numerical Simulation Studies on Effects of Explosion Impact Load on Underground Mine Seal. Mining, Metallurgy & Exploration. 37 (4), 665-680 (2019). DOI: https://doi.org/10.1007/s42461-019-00143-2
[52] Y.L. Dong, X. Tian, H.L. Liu, Research and application of pressure-resistant, explosion-proof, fire-proof closed in strong impact mine. Architectural Engineering Technology and Design. 3 (26), 1815-1986 (2018).
[53] L .N. Qu, Experimental Research on Suppressing Gas Explosion by K and S-type Aerosol. MD thesis, Xi’an University of Science and Technology, Xi’an, June.
[54] X. Chen, F.Y. Wang, T.S. Liu, Study of Suppression Materials’ Characteristics and Effects on Gas explosion. Engineering Blasting. 18 (1), 100-102 (2012).
[55] Y.S. Cheng, Suppression characteristics of red-mud based composite powders with core-shell structure on methane explosion. MD thesis, Henan Polytechnic University, Jiaozuo, June.
[56] B.Y. Jiang, Z.G. Liu, M.Y. Tang, K. Yang, P. Lv, B.Q. Lin, Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semiconfined duct. Nat. Gas Sci. Eng. 29, 141-149 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.01.004
[57] Z.M. Luo, T. Wang, Z.H. Tian, F.M. Cheng, J.L. Deng, Y.T. Zhang, Experimental study on the suppression of gas explosion using the gasesolid suppressant of CO2/ABC powder. J. Loss Prevent. Proc. 30, 17-23 (2014). DOI: https://doi.org/10.1016/j.jlp.2014.04.006
[58] Q.M. Liu, Y.L. Hu, C.H. Bai, M. Chen, Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube. J. Loss Prevent. Proc. 26, 310-316 (2013). DOI: https://doi.org/10.1016/j.jlp.2011.05.004
[59] X.F. Chen, Y. Zhang, Q.M. Zhang, S.F. Ren, J.X. Wu, Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders. Theor. App. Mech. Lett. 1 (3), 1-4 (2011). DOI: https://doi.org/10.1063/2.1103204
[60] M.G. Yu, T.Z. Wang, H. You, A. An, Study on the effect of thermal property of powder on the gas explosion suppression. Procedia Eng. 26, 1035-1042 (2011). DOI: https://doi.org/10.1016/j.proeng.2011.11.2271
[61] F. Zeman, Effect of steam hydration on performance of lime sorbent for CO2 capture. Int. J. Greenh. Gas Con. 2 (2), 203-209 (2008). DOI: https://doi.org/10.1016/S1750-5836(07)00115-6