Szczegóły

Tytuł artykułu

Topology optimization without volume constraint – the new paradigm for lightweight design

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2021

Wolumin

69

Numer

4

Afiliacje

Nowak, Michał : Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland ; Boguszewski, Aron : Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland

Autorzy

Słowa kluczowe

topology optimization ; lightweight design ; biomimetic structural optimization

Wydział PAN

Nauki Techniczne

Zakres

e137732

Bibliografia

  1.  W. Wang et al., “Space-time topology optimization for additive manufacturing”, Struct. Multidiscip. Optim., vol. 61, no. 1, pp. 1‒18, 2020, doi: 10.1007/s00158-019-02420-6.
  2.  Y. Saadlaoui, et al., “Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes”, J. Manuf. Syst., vol. 43, pp. 178‒286, 2017, doi: 10.1016/j.jmsy.2017.03.006.
  3.  J. Zhu, et al., “A review of topology optimization for additive manufacturing: Status and challenges”, Chin. J. Aeronaut., vol. 34, no. 1, pp. 9‒110, 2021, doi: 10.1016/j.cja.2020.09.020.
  4.  O. Sigmund, “A 99 line topology optimization code written in Matlab”, Struct. Multidiscip. Optim., vol. 21, no. 2, pp. 120‒127, 2001, doi: 10.1007/s001580050176.
  5.  M. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York, Springer, 2003, doi: 10.1007/978-3-662-05086-6.
  6.  M. Bendsoe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197‒224, 1988.
  7.  O. Sigmund and K. Maute, “Topology optimization approaches”, Struct. Multidiscip. Optim., vol. 48, pp. 1031‒1055, 2013, doi: 10.1007/ s00158‒013‒0978‒6.
  8.  Z. Ming and R. Fleury, “Fail-safe topology optimization”, Struct. Multidiscip. Optim., vol. 54, no. 5, pp. 1225‒1243, 2016, doi: 10.1007/ s00158-016-1507-1.
  9.  L. Krog et al., “Topology optimization of aircraft wing box ribs”, AIAA Paper, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004, doi: 10.2514/6.2004-4481.
  10.  Z. Luo et al., “A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures”, Aerosp. Sci. Technol., vol. 10, pp. 364‒373, 2006, doi: 10.1016/j.ast.2005.12.006.
  11.  M. Zhou et al., “Industrial application of topology optimization for combined conductive and convective heat transfer problems”, Struct. Multidiscip. Optim., vol. 54, no 4, pp. 1045‒1060, 2016, doi: 10.1007/s00158-016-1433-2.
  12.  G. Allaire et al., “The homogenization method for topology optimization of structures: old and new”, Interdiscip. Inf. Sci., vol.25/2, pp. 75‒146, 2019, doi: 10.4036/iis.2019.B.01.
  13.  G. Allaire and R.V. Kohn, “Topology Optimization and Optimal Shape Design Using Homogenization”, Topology Design of Structures. NATO ASI Series – Series E: Applied Sciences, M. Bendsoe, C. Soares – eds., vol. 227, pp. 207‒218, 1993, doi: 10.1007/978-94-011- 1804-0_14.
  14.  G. Allaire et al., ”Shape optimization by the homogenization method”, Numer. Math., vol. 76, no. 1, pp. 27‒68, 1997, doi: 10.1007/ s002110050253.
  15.  G. Allaire, Shape Optimization by the Homogenization Method, Springer, 2002, doi: 10.1007/978-1-4684-9286-6.
  16.  J. Wolff, “The Classic: On the Inner Architecture of Bones and its Importance for Bone Growth”, Clin. Orthop. Rel. Res., vol. 468, no. 4, pp. 1056‒1065, 2010, doi: 10.1007/s11999-010-1239-2.
  17.  H. M. Frost, The Laws of Bone Structure, C.C. Thomas, Springfield, 1964.
  18.  R. Huiskes et al., ”Adaptive bone-remodeling theory applied to prosthetic-design analysis”, J. Biomech., vol. 20, pp. 1135‒1150, 1987.
  19.  R. Huiskes, “If bone is the answer, then what is the question?”, J. Anat., vol. 197, no. 2, pp. 145‒156, 2000.
  20.  D.R. Carter, “Mechanical loading histories and cortical bone remodeling”, Calcif. Tissue Int., vol. 36, no. Suppl. 1, pp. 19‒24, 1984, doi: 10.1007/BF02406129.
  21.  R.F.M. van Oers, R. Ruimerman, E. Tanck, P.A.J. Hilbers, R. Huiskes, “A unified theory for osteonal and hemi-osteonal remodeling”, Bone, vol. 42, no. 2, pp. 250‒259, 2008, doi: 10.1016/j.bone.2007.10.009.
  22.  M. Nowak, J. Sokołowski, and A. Żochowski, “Justification of a certain algorithm for shape optimization in 3D elasticity”, Struct. Multidiscip. Optim., vol. 57, no. 2, pp. 721‒734, 2018, doi: 10.1007/s00158-017-1780-7.
  23.  M. Nowak, J. Sokołowski, and A. Żochowski, “Biomimetic approach to compliance optimization and multiple load cases”, J. Optim. Theory Appl., vol. 184, no. 1, pp. 210‒225, 2020, doi: 10.1007/s10957-019-01502-1.
  24.  J. Sokołowski and J-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992, doi: 10.1007/978- 3-642-58106-9.
  25.  D. Gaweł et al., “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741‒750, 2017, doi: 10.1515/bpasts-2017-0080.

Data

27.06.2021

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.137732 ; ISSN 2300-1917
×