Details

Title

Wet steam flow in 1100 MW turbine

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 3

Affiliation

Jun, Gukchol : Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic ; Jun, Gukchol : Doosan Škoda Power s.r.o., Tylova 1/57, 301 28, Pilsen, Czech Republic ; Kolovratník, Michal : Doosan Škoda Power s.r.o., Tylova 1/57, 301 28, Pilsen, Czech Republic ; Hoznedl, Michal : Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic

Authors

Keywords

Steam turbine ; Wet steam loss ; Non-equilibrium condensation ; CFD

Divisions of PAS

Nauki Techniczne

Coverage

63-85

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Walters P.T., Skingley P.C.: An optical instrument for measuring the wetness fraction and droplet size of wet steam flow in LP turbines. In: Proc. Conf. on Steam Turbines for the 1980s, Vol. 12, London, 9–12 Oct. 1979, C141, 337–348.
[2] Kleitz A., Laali, A.R., Courant J.J.: Fog droplet size measurement and calculation in wet steam turbines. In: Proc. Int. Conf. on Technology of Turbine Plant Operating in Wet Steam (J.M. Mitchell, Ed.), London, 11–13 October 1988, 201– 206.
[3] Petr V., Kolovratník M.: Modelling of the droplet size distribution in LP steam turbine. In: Proc. 3rd Eur. Conf. on Turbomachinery – B, Fluid Dynamics and Thermodynamics, London, 2–5 March 1999, 771–782.
[4] Starzmann J., Schatz M., Casey M.V., Mayer J.F., Sieverding F.: Modelling and validation of wet steam flow in a low pressure steam turbine. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10, 2011, GT2011-45672, 2335–2346.
[5] Hideaki S., Tabata S. Tochitani N., Sasao Y., Takata R., Osako M.: Investigation of moisture removal on last stage stationary blade in actual steam turbine. In: Proc. ASME Turbo Expo 2020, virtual, online, Sept. 21–25, 2020, GT2020-14831.
[6] Grübel M., Starzmann J., Schatz M., Eberle T., Vogt D.M., Sieverding F.: Two-phase flow modeling and measurements in low-pressure turbines – Part I: numerical validation of wet steam models and turbine modeling. J. Eng. Gas Turbines Power 137(2015), 4, 042602 (11), GTP-14-1442.
[7] Starzmann J., Hughes F. R., White, A., et al.: Results of the International Wet Steam Modelling Project. In: Proc. Wet Steam Conference. Prague, Sept. 12–14, 2016.
[8] Fendler Y., Dorey J.M., Stanciu M., Lance M., Léonard O.: developments for modeling of droplets deposition and liquid film flow in a throughflow code for steam turbines. In: Proc. ASME Turbo Expo 2012, Copenhagen, June 11–15, 2012, GT2012-68968, 537–547.
[9] Gyarmathy G.: Grundlagen einer Theorie der Nassdampfturbine. PhD thesis, ETH Zurich, Juris-Verlag, Zurich 1962.
[10] Laali A.R.: A new approach for assessment of the wetness losses in steam turbines. In Proc. IMechE Conf. Turbomachinery – Latest Developments in a Changing Scene, London, March, 1991, 155–166.
[11] Wróblewski W, Chmielniak T., Dykas S.: Models for water steam condensing flows. Arch. Thermodyn. 41 (2020), 4, 63–92.
[12] Petr V., Kolovratník M.: Wet steam energy loss and related Baumann rule in low pressure steam turbines. P. I. Mech. Eng. A-J. Pow. 228(2014), 2, 206–215.
[13] Holmberg H., Ruohonen P., Ahtila P.: Determination of the real loss of power for a condensing and a backpressure turbine by means of second law analysis. Entropy 11 (2009), 4, 702–712.
[14] Gardzilewicz A.: Evaluating the efficiency of low pressure part of steam turbines based on probing measurements. Trans. Inst. Fluid-Flow Mach. 135(2017), 41–56.
[15] Míšek T., Kubín Z.: Static and dynamic analysis of 1 220 mm steel last stage blade for steam turbine. Appl. Comput. Mech. 3(2009), 1, 133–140.
[16] Luxa M. Safarík P., Synác J., Rudas B.: High-speed aerodynamic investigation of the midsection of a 48” rotor blade for the last stage of steam turbine. In: Proc: 10th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC10, Lappeenranta, Apr. 15–19, 2013, ETC2013-116.
[17] Finzel C., Schatz M., Casey M.V., Gloss D.: Experimental investigation of geometrical parameters on the pressure recovery of low pressure steam turbine exhaust hoods. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10 2011, GT2011- 45302, 2255–2263.
[18] Jones M., Crossland R.: performance improvements of nuclear power plants by the application of longer LP last stage blades and advanced design techniques. In: ASME Power Conf., Baltimore, June 28–31, 2014; POWER2014-32072, V001T04A002.
[19] Hoznedl M., Kolovratník M., Bartoš O., Sedlák K., Kalista R., Mrózek L.: Experimental research on the flow at the last stage of a 1090 MW steam turbine. P. I. Mech. Eng. A-J. Pow 232(2018), 5, 515–524.
[20] Štastný M.: Flow field in the last steam turbine stage. In: Proc. 7th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics , Euroturbo 7, Athens, March 5–9, 2007, 867–876.
[21] Kolovratník M., Bartoš O.: CTU optical probes for liquid phase detection in the 1000 MW steam turbine. In: Proc. EFM14 – Experimental Fluid Mechanics 2014, EPJ Web Conf. 92(2015), 02035.
[22] Brüggemann C., Schatz M., Vogt D.M., Popig F.: A numerical investigation of the impact of part-span connectors on the flow field in a linear cascade. In: Proc.ASME Turbo Expo 2017, Charlotte, June 26–30, 2017, GT2017-63359, V02AT40A005.
[23] Radnic T., Hála J., Luxa M., Šimurda D., Fürst J., Hasnedl D., Kellner, J.: Aerodynamic effects of tie-boss in extremely long turbine blades. ASME J. Eng. Gas Turbines Power. 140(2018), 11: 112604, GTP-17-1218.
[24] Häfele M. Traxinger C., Grübel M., Schatz M., Vog D.M., Drozdowski R.: Experimental and numerical investigation of the flow in a low-lressure industrial steam turbine with part-span connectors. In: Proc. ASME Turbo Expo 2015: Montreal. June 15–19, 2015, GT2015-42202, V008T26A005.
[25] Young J.B.: Spontaneous condensation of Steam in Supersonic Nozzles. 1980STIN...8113306Y, Whittle laboratory, Cambridge University, 1980
[26] Gerber A.G. Kermani M.J.: A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int. J. Heat Mass Tran. 47(2004), 10–11, 2217–2231.
[27] Hill P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25(1966), 3, 593–620.
[28] Ansys CFX. https://www.ansys.com/products/fluids/ansys-cfx (accessed 5 March 2021).
[29] The International Association for the Properties of Water and Steam. Revised Release on the IAPWS-97 Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/relguide/IF97-Rev.html (accessed 15 Sept. 2020).
[30] Sova L., Jun G., Štastný M.: Modifications of steam condensation model implemented in commercial solver. AIP Conf. Proc. 1889(2017), 020039-1–020039-8.
[31] Petr V., Kolovratník M.: Heterogeneous effects in the droplet nucleation process in LP steam turbines. In: Proc. 4th Eur. Conf. on Turbomachinery Flud Dynamics and Thermodynamics (G. Bois, R. Decuypere, F. Martelli, Eds.), Firenze, 2001, 783–792.
[32] Baumann K.: Some recent developments in large steam turbine practice. J. Inst. Electr. Eng., 59(1921), 565–623.
[33] Moore M.J.: Gas dynamics of wet steam and energy losses in wet-steam turbines. In: Two-Phase Steam Flow in Turbines and Separators (M.J. Moore, C.H. Sieverding, Eds.). Hemisphere, Washington 1976, 59–126.

Date

2021.11.09

Type

Article

Identifier

DOI: 10.24425/ather.2021.138110

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×