Details
Title
Robust continuous third-order finite time sliding mode controllers for exoskeleton robotJournal title
Archive of Mechanical EngineeringYearbook
2021Volume
vol. 68Issue
No 4Affiliation
Fellag, Ratiba : Centre de Développement des Technologies Avancées, Alger, Algérie. ; Guiatni, Mohamed : Laboratoire LCS^2, Ecole Militaire Polytechnique, Alger, Algérie. ; Fellag, Ratiba : Laboratoire LRPE, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algérie. ; Hamerlain, Mustapha : Centre de Développement des Technologies Avancées, Alger, Algérie. ; Achour, Noura : Laboratoire LRPE, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algérie.Authors
Keywords
exoskeleton robot ; higher order ; sliding control ; homogeneous ; robust ; trajectory tracking ; rehabilitationDivisions of PAS
Nauki TechniczneCoverage
395-414Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] N. Rehmat, J. Zuo, W. Meng, Q. Liu, S.Q. Xie, and H. Liang. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. International Journal of Intelligent Robotics and Applications, 2(3):283–295, 2018. doi: 10.1007/s41315-018-0064-8.[2] A. Demofonti, G. Carpino, L. Zollo, and M.J. Johnson. Affordable robotics for upper limb stroke rehabilitation in developing countries: a systematic review. IEEE Transactions on Medical Robotics and Bionics, 3(1):11–20, 2021. doi: 10.1109/TMRB.2021.3054462.
[3] A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010. doi: 10.1056/NEJMoa0911341.
[4] P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. Journal of NeuroEngineering and Rehabilitation, 6(1):46, 2009. doi: 10.1186/1743-0003-6-46.
[5] A.S. Niyetkaliyev, S. Hussain, M.H. Ghayesh, and G. Alici. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Transactions on Human-Machine Systems, 47(6):1134–1145, 2017. doi: 10.1109/THMS.2017.2700634.
[6] A. Michnik, J. Brandt, Z. Szczurek, M. Bachorz, Z. Paszenda, R. Michnik, J. Jurkojc, W. Rycerski, and J. Janota. Rehabilitation robot prototypes developed by the ITAM Zabrze. Archive of Mechanical Engineering, 61(3):433–444, 2014. doi: 10.2478/meceng-2014-0024.
[7] A. Gmerek. Mechanical and hardware architecture of the semi-exoskeleton arm rehabilitation robot. Archive of Mechanical Engineering, 60(4):557-574, 2013. doi: 10.2478/meceng-2013-0034.
[8] I. Büsching, A. Sehle, J. Stürner, and J. Liepert. Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation – a pilot study. Journal of NeuroEngineering and Rehabilitation, 15(1):72, 2018. doi: 10.1186/s12984-018-0415-6.
[9] R. Fellag, T. Benyahia, M. Drias, M. Guiatni, and M. Hamerlain. Sliding mode control of a 5 dofs upper limb exoskeleton robot. In 2 017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B), pages 1–6, Boumerdes, Algeria, 29-31 Oct. 2017. doi: 10.1109/ICEE-B.2017.8192098.
[10] M.H. Rahman, M. Saad, J-P. Kenné, and P.S. Archambault. Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control, Automation and Systems, 11(1):92–104, 2013. doi: 10.1007/s12555-011-0135-1.
[11] T. Madani, B Daachi, and K. Djouani. Non-singular terminal sliding mode controller: Application to an actuated exoskeleton. Mechatronics, 33:136–145, 2016. doi: 10.1016/j.mechatronics.2015.10.012.
[12] A. Abooee, M.M. Arefi, F. Sedghi, and V. Abootalebi. Robust nonlinear control schemes for finite-time tracking objective of a 5-DOF robotic exoskeleton. International Journal of Control, 92(9):2178–2193, 2019. doi: 10.1080/00207179.2018.1430379.
[13] A. Riani, T. Madani, A. Benallegue, and K. Djouani. Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Engineering Practice, 75:108–117, 2018. doi: 10.1016/j.conengprac.2018.02.013.
[14] A. Jebri, T. Madani, and K. Djouani. Adaptive continuous integral-sliding-mode controller for wearable robots: Application to an upper limb exoskeleton. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pages 766–771, Toronto, Canada, 24-28 June 2019. doi: 10.1109/ICORR.2019.8779431.
[15] C.A. Zamora, J.A. Moreno, and S. Kamal. Control integral discontinuo para sistemas mecánicos. In Congreso Nacional de Control Automático 2013, pages 11–16. Ensenada, Mexico, Oct. 16- 18, 2013. (in Spanish).
[16] J.A. Moreno. Discontinuous integral control for systems with relative degree two. In: J. Clempner, W.Yu (eds.), New Perspectives and Applications of Modern Control Theory, pages 187–218. Springer, 2018. doi: 10.1007/978-3-319-62464-8_8.
[17] S. Kamal, J.A. Moreno, A. Chalanga, B. Bandyopadhyay, and L.M. Fridman. Continuous terminal sliding-mode controller. Automatica, 69:308–314, 2016. doi: 10.1016/j.automatica.2016.02.001.
[18] S. Kamal, A. Chalanga, J.A. Moreno, L. Fridman, and B. Bandyopadhyay. Higher order supertwisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS), pages 1–5, Nantes, France, 29 June – 2 July 2014. doi: 10.1109/VSS.2014.6881129.
[19] A. Levant. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6):1247–1263, 1993. doi: 10.1080/00207179308923053.
[20] J.A. Moreno and M. Osorio. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4):1035–1040, 2012. doi: 10.1109/TAC.2012.2186179.
[21] J.A. Moreno and M. Osorio. A Lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE Conference on Decision and Control, pages 2856–2861, Cancun, Mexico, 9-11 December 2008. doi: 10.1109/CDC.2008.4739356.
[22] R. Fellag, M. Hamerlain, S. Laghrouche, M. Guiatni, and N. Achour. Homogeneous finite time higher order sliding mode control applied to an upper limb exoskeleton robot. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pages 355–360, Paris, France, 23-26 April 2019. doi: 10.1109/CoDIT.2019.8820676.
[23] H-B. Kang and J-H. Wang. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. ISA Transactions, 52(6):844–852, 2013. doi: 10.1016/j.isatra.2013.05.003.
[24] H-B. Kang and J-H. Wang. Adaptive robust control of 5 DOF upper-limb exoskeleton robot. International Journal of Control, Automation and Systems, 13(3):733–741, 2015. doi: 10.1007/s12555-013-0389-x.
[25] B.O. Mushage, J.C. Chedjou, and K.Kyamakya. Fuzzy neural network and observer-based faulttolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dynamics, 87(3):2021–2037, 2017. doi: 10.1007/s11071-016-3173-7.
[26] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 2008.
[27] A. Levant. Homogeneity approach to high-order sliding mode design. Automatica, 41(5):823–830, 2005. doi: 10.1016/j.automatica.2004.11.029.
[28] S. Kamal, A. Chalanga, V. Thorat, and B. Bandyopadhyay. A new family of continuous higher order sliding mode algorithm. In: 2015 10th Asian Control Conference (ASCC), pages 1–6, Kota Kinabalu, Malaysia, 31 May – 3 June 2015. doi: 10.1109/ASCC.2015.7244591.
[29] S.P. Bhat and D.S. Bernstein. Finite-time stability of continuous autonomous systems. SIAM Journal of Control and Optimization, 38(3):751–766, 2000. doi: 10.1137/S0363012997321358.
[30] J.J. Craig. Introduction to Robotics: Mechanics and Control, 3rd ed. Pearson Education International, 2009.
[31] J-H.Wang, Z-B. Jiang, X-F.Wang, Y. Zhang, and D. Guo. Kinematics simulation of upper limb rehabilitant robot based on virtual reality techniques. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pages 6681–6683, Deng Feng, China, 8-10 August 2011. doi: 10.1109/AIMSEC.2011.6009874.