Details

Title

The application of different methods for indirect microbial development assessment in pilot scale drinking water biofilters

Journal title

Archives of Environmental Protection

Yearbook

2021

Volume

47

Issue

3

Affiliation

Holc, Dorota : Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland ; Mądrecka-Witkowska, Beata : Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland ; Komorowska-Kaufman, Małgorzata : Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland ; Szeląg-Wasielewska, Elżbieta : Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Poland ; Pruss, Alina : Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland ; Cybulski, Zefiryn : Greater Poland Cancer Center, Microbiology Laboratory, Poland

Authors

Keywords

biofilm ; drinking water treatment ; pilot scale ; microbiological activity ; biological activated carbonfilters (BAC) ; identification of microorganisms

Divisions of PAS

Nauki Techniczne

Coverage

37-49

Publisher

Polish Academy of Sciences

Bibliography

  1. Adam, G. & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 7-8, pp. 943-951, DOI: 10.1016/S0038-0717(00)00244-3
  2. Battin, T.J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biomass. The Science of the Total Environment, 198, 1, pp. 51-60, DOI: 10.1016/S0048-9697(97)05441-7
  3. Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. (1999). LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods, 37, 1, pp.77-86, DOI: 10.1016/s0167-7012(99)00048-2
  4. Burtscher, M.M., Zibuschka, F., Mach1, R.L., Lindne, G. & Farnleitner, A.H. (2009). Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA, 35, 4, pp. 495-504, DOI: 10.4314/wsa.v35i4.76809
  5. Chaukura, N., Marais, S.S., Moyo, W., Mbali, N., Thakalekoala, L.C., Ingwani, T., Mamba, B.B., Jarvis, P. & Nkambule, T.T.I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review,  Journal of En-vironmental Chemical Engineering, 8, 2, 103659, DOI: 10.1016/j.jece.2020.103659
  6. Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. & Welch, R.P. (1984). Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology, 10, 2, pp.179-185, DOI: 10.1007/BF02011424.
  7. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
  8. Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E. & Biggs, C.A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Research 65, pp.134-156, DOI: 0.1016/j.watres.2014.07.008
  9. Elhadidy, A.M., Van Dyke, M.I., Chen, F., Peldszus, S. & Huck, P.M. (2017). Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters, Environ. Sci. Water Res. Technol., 3, pp. 249–261, DOI: 10.1039/C6EW00279J
  10. Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J. & Huang, C.-H. (2017). Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 123, pp. 224-235 DOI: 10.1016/j.watres.2017.06.073
  11. Garrity G.M. (ed.) (2005a) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part B The Gammaproteobacteria, Springer, New York.
  12. Garrity G.M. (ed.) (2005b) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C The Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York.
  13. Hasan, H.A., Muhammad, M.H. & Ismail, N.I. (2020), A review of biological drinking water treatment technologies for contaminants removal from polluted water resources, Journal of Water Process Engineering, 33, 101035, DOI: 10.1016/j.jwpe.2019.101035
  14. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Acceleration of carbon filters activation - experiments of pilot scale technological investigations. Water supply and water quality. PZITS, Poznań, pp. 683-703 (in Polish).
  15. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Effectiveness of organic compounds removing during water treatment by filtration through a biologically active carbon filter with the identification of microorganisms. Annual Set The Environment Protection, 18, 2, pp.235-246 (in Polish).
  16. Hopkins, Z.R., Sun, M., DeWitt, J.C. & Knappe, D.R.U. (2018). Recently Detected Drinking Water Contaminants: GenX and Other Per‐and Polyfluoroalkyl Ether Acids. Journal‐American Water Works Association, 110, 7, pp. 13-28, DOI: doi.org/10.1002/awwa.1073
  17. Kaarela, O. E., Harkki, H. A., Palmroth, M. R. T. & Tuhkanen T. A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, 5-8, pp. 681-692, DOI: 10.1080/09593330.2014.958542
  18. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A. & Tchórzewska-Cieślak B. (2017). The use of activated carbons for removing organic matter from groundwater, Archives of Environmental Protection, 43, 3, pp. 32-41, DOI:10.1515/aep-2017-0031
  19. Kijowska, E., Leszczyńska, M. & Sozański, M.M. (2001): Metabolic activity test in investigation of biodegradation in biological filters, Water, Science & Technology: Water Supply, 1, 2, pp.151-158, DOI: doi.org/10.2166/ws.2001.0032
  20. Kołaski, P., Wysocka, A., Pruss, A., Lasocka-Gomuła, I., Michałkiewicz, M. & Cybulski Z. (2019). Removal of Organic Matter from Water During Rapid Filtration through a Biologically Active Carbon Filter Beds – a Full Scale Technological Investigation, Annual Set The Environment Protection, 21, 2, pp. 1136-1155
  21. Kołwzan, B. (2011). Analysis of biofilms – their formation and functioning. Environmental Pollution Control, 33, 4, pp. 3-14 (in Polish)
  22. Komorowska-Kaufman, M., Ciesielczyk, F., Pruss, A. & Jesionowski T. (2018). Effect of sedimentation time on the granulometric composition of suspended solids in the backwash water from biological activated carbon filters. E3S Web of Conferences, 44, 00072. EDP Sciences, DOI: 10.1051/e3sconf/20184400072
  23. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138, DOI: 10.1016/j.chemosphere.2016.09.097
  24. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012) Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886, DOI: 10.1007/s12257-012-0127-x
  25. Lis, A., Pasoń, Ł. & Stępniak, L. (2016). Review of Methods Used to Indication of Biological Carbon Filters Activity. Engineering and Protection of Environment, 19, 3, pp. 413-425, DOI: 10.17512/ios.2016.3.11 (in Polish)
  26. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds. Water Supply and Wastewater Disposal, Politechnika Lubelska, 163-177.
  27. Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Review, 34, 4, pp. 415-425, DOI: 10.1111/j.1574-6976.2009.00200.x
  28. Olszewska, M. & Łaniewska-Trokenheim, Ł. (2013) Fluorescence-based methods of cell staining in physiological state studies of bacteria. Advancements of Microbiology, 52, 4, pp. 409-418 (in Polish).
  29. Papciak D., Kaleta J., Puszkarewicz A., Tchórzewska-Cieślak B. (2016). The use of biofiltration process to remove organic matter from groundwater. Journal of Ecological Engineering, 17, 3, pp. 119–124, DOI: 10.12911/22998993/63481
  30. Pincus, D. H. (2013). Microbial identification using the bioMérieux Vitek 2 system, Encyclo-pedia of Rapid Microbiological Methods, PDA-DHI, p.1-31. (https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf )
  31. Pruss, A. (2007): Contribution of Biofilm Thickness on Sand Filter Grains to Oxygen Uptake During Ammonia Nitrogen Removal. Environmental Pollution Control, 1, pp. 35-39 (in Polish).
  32. Pruss, A., Maciołek, A. & Lasocka-Gomuła I. (2009). Effect of the Biological Activity of Carbon Filter Beds on Organic Matter Removal from Water. Environmental Pollution Control, 31, pp. 31-34 (in Polish).
  33. Sadowska J. & Grajek W. (2009). Analysis of physiological state of single bacterial cell using fluorescent staining methods. Biotechnologia, 4, pp. 102-114 (in Polish).
  34. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M. & Morawski A. W. (2006). Biological activation of carbon filters. Water Research, 40, 2, pp.355-363, DOI: 10.1016/j.watres.2005.11.014
  35. Simpson D. R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, 12, pp. 2839-2848, DOI: 10.1016/j.watres.2008.02.025
  36. Smith, A.C. & Hussey M.A. (2016) Gram Stain Protocols, American Society for Microbiology, pp. 1-9.
  37. (https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf)
  38. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C. & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 1-3, pp. 156-181, DOI: 10.1016/j.desal.2005.12.052
  39. Standard Methods for the Examination of Water and Wastewater, 23’rd Edition, APHA, 2017 Washinghton
  40. Szeląg-Wasielewska, E., Joniak, T., Michałkiewicz, M., Dysarz, T. & Mądrecka, B. (2009) Bacterioplankton of the Warta River in relation to physicochemical parameters and flow rate. Ecohydrology & Hydrobiology, 9, 2-4, pp. 225-236. DOI: 10.2478/v10104-010-0008-x
  41. Szuster-Janiaczyk A. (2016). The Microbiological Evaluation of Deposits Come from Water Network on the Example of Selected Water Supply System. Annual Set The Environment Protection, 18, 2, pp. 815–827. (in Polish)
  42. van der Kooij, D. & van der Wielen, P.W.J.J. (2014). Microbial Growth in Drinking-Water Supplies. Problems, Causes, Control and Research Needs, IWA Publishing, UK
  43. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N. & Hammes F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113, pp. 191-206. DOI: 10.1016/j.watres.2017.01.065
  44. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. (1993). Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 59, 5, pp. 1520-1525, DOI: 10.1128/AEM.59.5.1520-1525.1993
  45. WHO (2003). Expert consensus. In: Bartram J., Cotruvo J.A., Exner M., Fricker C.R., Glasmacher A. (Eds.) Heterotrophic plate counts and drinking-water safety-the significance of HPCs for Water quality and human health. IWA Publishing on behalf of the World Health Organisation, London.
  46. Zamule, S.M., Dupre, C.E., Mendola, M.L., Widmer, J., Shebert, J.A., Roote, C.E. & Das P. (2021). Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicology and Environmental Safety 209, 111814; DOI: 10.1016/j.ecoenv.2020.111814
  47. Zhang, S., Gitungo, S.W., Axe, L., Raczko, R.F. & Dyksen, J.E. (2017). Biologically active filters – an advanced water treatment process for contaminants of emerging concern. Water Research, 114, pp. 31-41, DOI: 10.1016/j.watres.2017.02.014
  48. Ziglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P. & Villa, R. (2002). Assessment of activated sludge viability with flow cytometry. Water Research, 36, 2, pp. 460-468, DOI: 10.1016/s0043-1354(01)00228-7

Date

19.09.2021

Type

Article

Identifier

DOI: 10.24425/aep.2021.138462

Open Access Policy


×