Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Pb(II)-resistant bacterium was isolated from heavy metal-contained soils and used as a biosorbentto remove Pb(II). The strain was identified as Enterobacter sp. based on the 16S rRNA sequence analysis. Theeffect of biosorption properties (pH value, Pb(II) concentration, bacterial concentration and temperature) onPb(II) was investigated by batch experiments. Results of FTIR and XPS showed that the biosorption process mainly involved some oxygen-containing groups (-OH and -COOH groups). The experimental results and equilibrium data were fitted by pseudo-second-order kinetic model and Langmuir model, respectively. The experimental biosorption isotherms fitted the Langmuir model, and the maximum biosorption capacity was 40.75 mg/g at 298 K. The calculated ΔGо and ΔHо were –4.06 and 14.91(kJ/mol), respectively, which indicated that biosorption process was spontaneous and endothermic. Results show that Enterobacter sp. will be an efficient biosorbent for Pb(II) removal.
Go to article

Bibliography

  1. Abdi, O. & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, pp. 1386-1399.
  2. Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, pp. 235-250.
  3. Baruah, R., Kalita, D.J., Saikia, B.K., Gautam, A., Singh, A.K. & Deka Boruah, H.P. (2016). Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. International Biodeterioration & Biodegradation, 112, pp. 18-30. DOI: 10.1016/j.ibiod.2016.04.032
  4. Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equlibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161, pp. 62-67. DOI: 10.1016/j.jhazmat.2008.02.122
  5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection,43, pp. 3-9. DOI: 10.1515/aep-2017-0017
  6. Boyanov, M. I., Kelly, S. D., Kemner, K M., Bunker, B. A., Fein, J. B. & Fowle, D. (2003). Adsorption of cadium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica Cosmochimica Acta, 67, pp. 3299-3311. DOI: 10.1016/S0016-7037(02)01343-1
  7. Bulut, Y., Gozubenli, N. & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, pp. 300-306. DOI: 10.1016/j.jhazmat.2006.10.027
  8. Chen, C., Hu, J. & Wang, J. L. (2020). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213, pp. 106-158. DOI: 10.1016/j.jenvrad.2020.106158
  9. Chen, Z., Pan, X., Chen, H., Guan, X. & Lin, Z. (2016). Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301, pp. 531-537. DOI: 10.1016/j.jhazmat.2015.09.023
  10. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2005). Biosorption of Cr(III), Cd(II), and Cu(II) ions by blue-green algae Spiruline sp: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, pp. 75-84. DOI: 10.1016/j.chemosphere.2004.10.005
  11. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, pp. 147-153.
  12. Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S. & Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, pp. 305-316. DOI: 10.1016/j.hydromet.2003.10.003
  13. Çolak, F., Atar, N., Yazıcıoğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solutions by bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, pp. 422-428. DOI: 10.1016/j.cej.2011.07.084
  14. Fourest, E. & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology Biotechnology, 37, pp. 399-403.
  15. Gupta, V. K., Shrivastava, A. K. & Jain, N. (2001). Biosorption of chromium from aqueous solutions by green algae Spirogyra species. Water Research, 35, pp. 4079-4085. DOI: 10.1016/S0043-1354(01)00138-5
  16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, pp. 1569-1576. DOI: 10.1016/j.jhazmat.2006.04.045
  17. Holan, Z. R., Volesky, B. & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, 41, pp. 819-825.
  18. Kratochvil, D. & Volesky, B. (1998). Advance in the biosorption of heavy metals. Trends Biotechnolgy, 16, pp. 291-300. DOI: 10.1016/S0167-7799(98)01218-9
  19. Ku, Y. & Jung, I. L. (2001). Photocatalytic reduction of Cr(IV) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, pp. 135-142. DOI: 10.1016/S0043-1354(00)00098-1
  20. Lee, Y. C. & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, pp. 5297-5304. DOI: 10.1016/j.biortech.2010.12.103
  21. Li, D. D., Xu, X. J., Yu, H. W. & Han, X. R. (2017). Characterization of Pb(II) biosorption by psychrotrophic strain Pseudomonas sp. 13 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196, pp. 8-15. DOI: 10.1016/j.jenvman.2017.02.076
  22. Liu, L., Liu, J., Liu, X. T., Dai, C. W., Zhang, Z. X., Song, W. C. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, pp. 117-124. DOI: 10.1016/j.jenvrad.2019.03.008
  23. Liu, L., Chen, J. W., Liu, F., Song, W. C. & Sun, Y. B. (2021). Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 194, 110691. DOI: 10.1016/j.envres.2020.110691
  24. Liu, L., Zhang, Z. X., Song, W. C. & Chu, Y. N. (2018). Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. Journal of Radioanalytical and Nuclear Chemistry, 318, pp. 1151-1160. DOI: 10.1007/s10967-018-6209-2
  25. Lu, N. Q., Hu, T. J., Zhai, Y. B., Qin, H. Q., Aliyeva, J. & Zhang, H. (2020). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061. DOI: 10.1016/j.envres.2019.109061
  26. Lu, X., Zhou, X. J. & Wang, T. S. (2013). Mechanism of uranium(VI) uptake by saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. Journal of Hazardous Materials, 262, pp. 297-303. DOI: 10.1016/j.jhazmat.2013.08.051
  27. Ma, X. M., Cui, W. G., Yang, L., Yang, Y. Y., Chen, H. F. & Wang, K. (2015). Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresource Technology, 185, pp. 70-78. DOI: 10.1016/j.biortech.2015.02.074
  28. Naik, B. R., Suresh, C., Kumar, N. S. V., Seshaiah, K. & Reddy, A. V. R. (2017). Biosorption of Pb(II) and Ni(II) ions by chemically modified Eclipta alba stem powder: kinetics and equilibrium studies. Separation Science and Technology, 52, pp. 1717-1732. DOI: 10.1080/01496395.2017.1298614
  29. Naik, M. M. & Dubey, S. K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environment Safety, 98, pp. 1-7. DOI: 10.1016/j.ecoenv.2013.09.039
  30. Naseem, R. & Tahir, S. S. (2011). Removal of Pb(II) from aqueous-acidic solutions by using bentonite as an adsorbent. Water Researce, 35, pp. 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0
  31. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. Decanicus and Geobacillus thermoleovorans sub. Sp. Stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152, pp. 195-206. DOI: 10.1016/j.cej.2009.04.041
  32. Raize, O., Argaman, Y. & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, pp. 451-458. DOI: 10.1002/bit.20136
  33. Ramrakhiani, L., Ghosh, S. & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a Review. Applied Biochemistry and Biotechnology, 180, pp. 41-78. DOI: 10.1007/s12010-016-2083-y
  34. Ren, G., Jin, Y., Zhang, C., Gu, H. & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environment Safety, 117, pp. 141-148. DOI: 10.1016/j.ecoenv.2015.03.033
  35. Sag, Y. & Kutsal, T. (2000). Determination of activation energies of heavy metal ions on Zoogloe ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 35, pp. 145-151.
  36. Saha, G. C., Hoque, M., Miah, M., Holze, R., Chowdhury, D.A., Khandaker, S. & Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto taro (colocasiaesculenta(l.) schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, 5, 2151-2162. DOI:10.1016/j.jece.2017.04.013
  37. Sahin, Y. & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, pp. 1895-1901. DOI: 10.1016/j.procbio.2004.07.002
  38. Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A. & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, pp. 127-135. DOI: 10.1016/j.bej.2003.12.007
  39. Shroff, K. A. & Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, pp. 1234-1245. DOI: 10.1016/j.cej.2011.05.034
  40. Siripongvutikorn, S., Asksonthong, R. & Usawakesmanee, W. (2016). Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health & Disease, 6, pp. 195-205. DOI: 10.31989/ffhd.v6i4.240
  41. Song, W. C., Wang, X. X., Chen, Z. S., Sheng, G. D., Hayat, T., Wang, X. K. & Sun, Y. (2018). Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As (V): Batch and XAFS investigation. Environmental Pollution, 237, pp. 228-236. DOI: 10.1016/j.envpol.2018.02.060
  42. Song, W. C., Wang, X. X., Wen, T., Yu, S. J., Zou, Y. D. & Sun, Y. B. (2016). Immobilization of As(V) in Rhizopus oryzae investigated by batch and XAFS techniques. ACS Omega, 1, pp. 899-906. DOI: 10.1021/acsomega.6b00260
  43. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration Biodegradation, 93, pp. 145-152. DOI: 10.1016/j.ibiod.2014.03.022
  44. Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Bo, P. & Feng, H. (2017). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, pp. 160-169. DOI: 10.1016/j.cej.2017.11.048
  45. Tunali, S., Cabuk, A. & Akar, T. (2006). Removal of lead and copper ions from soil. Chemcal Engineering Journal, 115, pp. 203-211. DOI: 10.1016/j.cej.2005.09.023
  46. Uzun, Y. & Şahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Archives of Environmental Protection,43, pp. 37-43. DOI 10.1515/aep-2017-0015
  47. Wang, J. L. & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, pp. 427-451.
  48. Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L. & Yu, H. (2017). High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, pp. 58-66. DOI: 10.1016/j.biortech.2017.02.069
  49. Wang, T. S., Zheng, X. Y., Wang, X. Y., Lu, X. & Shen, Y. H. (2017). Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 167, pp. 92-99. DOI: 10.1016/j.jenvrad.2016.11.018
  50. Zheng, X. Y., Shen, Y. H., Wang, X. R., & Wang, T. S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, pp.109-116. DOI: 10.1016/j.chemosphere.2018.03.165
Go to article

Authors and Affiliations

Lei Liu
1 2
Mengya Xia
1
Jianwen Hao
1
Haoxi Xu
1
Wencheng Song
2 3

  1. School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China
  2. Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
  3. Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

In Poland, in recent years, there has been a rapid accumulation of sewage sludge – a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analyzed on the basis of their basic properties, i.e., density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The research on technological and functional properties was carried out, the aim of which was to determine the practical usefulness of the hardening slurries used in the experiment. Subsequently, leaching tests were performed for heavy metals in the components, the structure of the hardening slurries. An experiment showed leaching of hazardous compounds at a level allowing their practical application. The article presents the potential uses of fly ash from SSTT in hardening slurry technology.
Go to article

Bibliography

  1. Asavapisit, S., Naksrichum, S. & Harnwajanawong, N. (2005). Strength, lechability, and microstructure characteristics of cement-based solidified plating sludge. Cement and Concrete Research 35, pp. 1042–1049.
  2. Batchelor, B. (2006). Overview of waste stabilization with cement. Waste Management 26, pp. 689–698.
  3. Bobrowski, A., Gawlicki, M. & Małolepszy, J. (1997). Analytical Evaluation of Immobilization of Heavy Metals in Cement Matrices, Environmental Science & Technology, 31, 3, pp. 745-749.
  4. Chang, F.C., Lin, J.D., Tsai, C.C. & Wang, K.S. (2010). Study on cement mortar and concrete made with sewage sludge ash. Water Science and Technology, 62, 7, pp. 1689-1693, 2010.
  5. Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L. & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of hazardous materials. 171 (1-3), pp. 76-82.
  6. Chou, J.-D., Wey, M.-Y. & Chang, S.-H. (2009). Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. Journal of Hazardous Materials 162 (2–3), pp. 1000–1006.
  7. Elicker, C., Sanches Filho P.J. & Castagno K.R.L. (2014). Electroremediation of heavy metals in sewage sludge. Braz. J. Chem. Eng. Sao Paulo, 31(2), pp. 365–371.
  8. EN 450-1:2012. (2012). Fly ash for concrete. Definition, specifications and conformity criteria.
  9. Falaciński, P. (2012). Possible applications of hardening slurries with fluidal fly ashes in environment protection structures. Archives of Environmental Protection. 38, 3, pp. 91-104. DOI: 10.2478/v10265-012-0031-7.
  10. Falaciński, P. & Szarek, Ł. (2016).Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures. Archives of Hydro-Engineering and Environmental Mechanics, 63, 1, pp. 47–61. DOI: 10.1515/heem-2016-0004
  11. Gawdzik, J. & Latosińska, J. (2014). Assessment of sewage sludge incineration fly-ash heavy metal immobilization. Engineering and Protection of Environment, t. 17, vol. 3, pp. 415-421.
  12. Guo, B., Liu, B., Yang, J. & Zhang, S. (2017).The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of environmental management, 193, pp. 410-422.
  13. Hoi, K. L., Barford, J.P. & Makay, G. (2010). Utylization of Incineration Waste Ash Residues in Portland Cement Clinker, Chemical Engineering Transaction, 21, pp. 757-762.
  14. Ibragimow, A., Głosińska, G., Siepak, M. & Walna, B. (2010). Preliminary studies of heavy metal pollution in floodplain sediments. Works and Geographic Studies 44, pp. 233–247.
  15. Jakob, A., Stucki ,S. & Kuhn, P. (1995). Evaporation of heavy metals during the heat treatment of municipal solid waste fly ash. Environmental Science and Technology 29, pp. 2429–2436.
  16. Jama-Rodzeńska, A., Bocianowski, J. & Nowak, W. (2014). Impact of municipal sewage sludge on heavy metal content in the sprouts of Salix viminalis L. clones. ZPPNR 576, pp. 45–56. (in Polish)
  17. Kledynski, Z. & Rafalski, L. (2009). Hardening slurries, Warszawa, KILiW PAN, IPPT PAN.(in Polish)
  18. Le Forestier, L. & Libourel, G. (2008). High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors. Journal of Hazardous Materials 154 (1–3) pp. 373–380.
  19. Li, Z. & Shuman, L.M. (1996). Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA. Sci Total Environ 191, pp. 95–107.
  20. Łukawska, M. (2014). Speciation analysis of phosphorous in sewage sludge after thermal incineration. Inżynieria i Ochrona Środowiska, 17 (3), pp. 433-439 (in Polish)..
  21. Marcinkowski, T. (2004). Alkaline stabilization of municipal sewage sludges. Scientific Papers of the Institute of Environment Protection Engineering of the Wroclaw University of Technology No. 76, Poland.
  22. Nowaka, B., Rochaa, S.F., Aschenbrennerb, F., Rechbergerb, H. & Wintera, F. (2012). Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chemical Engineering Journal 179 pp. 178– 185.
  23. Petruzzelli, G., Szymura, I., Lubrano,L. & Pezzarossa, B. (1989). Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes. Environetal Technology Letter. 10, pp. 521 – 526.
  24. Polowczyk, I., Bastrzyk, A., Sawiński, W., Koźlecki, T., Rudnicki, P., Sadowski, Z. & Sokołowski, A. (2010). Sorption properties of fly ash from coal burning. Chemical Engineering and Apparatus, 49(1), pp. 93–94.
  25. Poluszyńska. J. & Ślęzak, E. (2015). Characteristics of biomass incineration ashes and the assessment of their possible use for natural purposes. Scientific Works of Institute of Ceramics and Building Materials. 23, pp. 71-78.
  26. Renbo, Y., Wing-Ping, L. & Pin-Han, W. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan, Journal of Environmental Management, 104, pp. 67-76.
  27. Rodríguez, N. H., Ramírez, S. M., Varela, M. B., Guillem, M., Puig, J., Larrotcha, E. & Flores, J. (2010). Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement and Concrete Research, 40(5), pp. 778-786.
  28. Rosik-Dulewska, Cz. (2001). The content of fertilizer ingredients and heavy metals with their fractions in municiapl waste composts. Problem Journals of Advances in Agricultural Sciences 477, pp. 467-477.
  29. Sánchez-Chardi, A. (2016). Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmospheric Environment, 131, pp. 352-359.
  30. Sørum, L., Frandsen-Flemming, J. & Hustad, J. E. (2008). On the fate of heavy metals in municipal solid waste combustion part I: devolatilisation of heavy metals on the grate. Fuel, 82 (18) pp. 2273–2283.
  31. Struis, R.P.W., Ludwig, C., Lutz, H. & Scheidegger A.M. (2004). Speciation of zinc in municipal solid waste incinerator fly ash after heat treatment: an X-ray absorption spectroscopy study. Environmental Science and Technology, 38, pp. 3760–3767.
  32. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46, 3, pp. 49-59, DOI:10.24425/aep.2020.134535.
  33. Szarek, Ł., Falaciński P. & Wojtkowska, M. (2018). Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries, Archives of Civil Engineering, 64, 3, pp.131-144. DOI:10.2478/ace-2018-0034.
  34. Szarek, Ł. & Wojtkowska, M. (2018). Properties of fl y ash from thermal treatment of municipal sewage sludge in terms of EN 450-1. Archives of Environmental Protection 44, 1, pp. 63–69. DOI:10.24425/118182.
  35. Teixeira, S. R., Santos, G. T. A., Souza, A. E., Alessio, P., Souza, S. A. & Souza, N. R. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, 53(4), pp. 561-565.
  36. Ure, A.M., Davidson, C.M. & Thomas, R.P. (1995). Single and sequential extraction schemes for tracę metal speciation in soil and sediment, Techniąues and Instruinentation in Analytical Chemistry, 17, pp. 505-523.
  37. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013a). An overview of the composition and application of biomass ash. Part 1.Phase–mineral and chemical composition and classification. Fuel, 105, pp. 40–76.
  38. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013b). An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, pp. 19-39.
  39. Wojtkowska, M. & Bogacki, J. (2012). Use of Speciation Analysis for Monitoring Heavy Metals in the Bottom Sediments of the Utrata River‎, Environmental Protection, 34, 4, pp. 43-46.
  40. Woodard, C. (2006). Industrial Waste Treatment Handbook. Second Edition, Elselvier, USA.
  41. Wzorek, Z. (2008). Recovery of phosphorous compounds from thermally processed waste and their application as a substitute for natural phosphorous raw materials. Kraków, Publishing House of the Cracow University of Technology.
Go to article

Authors and Affiliations

Paweł Falaciński
1
ORCID: ORCID
Małgorzata Wojtkowska
1

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The chief purpose of this study is to investigate the process of adsorption of heavy metals in sands containing microplastics due to aging and bacterial culture. For this purpose, first, the experiment’s conditions were determined by reviewing previous studies and examining the effects of factors on the duration of bacterial culture and UV radiation. Finally, the test conditions were determined as follows: 25 g of adsorbent in 250 ml solution containing 50 mg/l of lead, cadmium, copper, zinc, chromium, and nickel, 750 micrograms of microplastic, bacterial culture time two days, aging time with UV light 14 days. Results of the study show that the addition of virgin microplastics has little effected on increasing the adsorbent strength, except in the case of nickel whichreduces adsorption strength. The aging process increases the absorption of all studied metals by up to 60%. Bacterial culture without an aging process reduces the absorption of nickel and cadmium. Simultaneous use of bacterial culture and aging increases the adsorption power by up to 80% for all metals.
Go to article

Bibliography

  1. Andini, S., Cioffi, R., Montagnaro, F., Pisciotta, F. & Santoro, L. (2006). Simultaneous adsorption of ‎chlorophenol and heavy metal ions on organophilic bentonite. Applied clay science. 31, no. 1-2. pp. 126-133. DOI: 10.1016/j.clay.2005.09.004
  2. Ashton, K., Holmes, L., & Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Marine pollution bulletin. 60(11). pp. 2050-2055. DOI: 10.1016/j.marpolbul.2010.07.014.
  3. Awan, M. A., Ishtiaq, A. Q. & Khalid, I. (2003). Removal of heavy metals through adsorption ‎using sand. Journal of Environmental Sciences 15, no. 3 . pp. 413-416.‎ PMID: 12938995
  4. Boujelben, N., Bouzid, J. & Elouear, Z. (2009). Adsorption of nickel and copper onto natural iron ‎oxide-coated sand from aqueous solutions: study in single and binary systems. Journal of ‎Hazardous Materials. 163, no. 1, pp. 376-38. DOI: 10.1016/j.jhazmat.2008.06.128
  5. Bradl, Heike B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of ‎colloid and interface science 277, no. 1, pp.1-18.DOI 10.1016/j.jcis.2004.04.005.
  6. Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science. 178. pp. 189-195. DOI: 10.1016/j.ecss.2015.12.003.
  7. Chen, Yen-Hua, and Fu-An Li. (2010). Kinetic study on removal of copper (II) using goethite and ‎hematite nano-photocatalysts. Journal of colloid and interface science. 347, no. 2. pp.277-‎‎281.‎ DOI10.1016/j.jcis.2010.03.050.
  8. Cole, Matthew. (2016). A novel method for preparing micro plastic fibers. Scientific reports. 6, no. 1. pp.1-7. DOI: 10.1038/srep34519.
  9. Corradini, F., Bartholomeus, H., Lwanga, E. H., Gertsen, H., & Geissen, V. (2019a). Predicting soil microplastic concentration using vis-NIR spectroscopy. Science of the Total Environment. 650. pp. 922-932. DOI: 10.1016/j.scitotenv.2018.09.101.
  10. Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019b). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the total environment. 671. pp.411-420. DOI: 10.1016/j.scitotenv.2019.03.368.
  11. Curren, E., & Leong, S. C. Y. (2019). Profiles of bacterial assemblages from microplastics of tropical coastal environments. Science of the total environment. 655. pp. 313-320. DOI: 10.1016/j.scitotenv.2018.11.250.
  12. Ding, J., Li, J., Sun, C., Jiang, F., Ju, P., Qu, L., ... & He, C. (2019). Detection of microplastics in local marine organisms using a multi-technology system. Analytical Methods. 11, no. 1. pp.78-87. DOI: 10.1039/C8AY01974F.
  13. Duarte, B., Silva, G., Costa, J.L., Medeiros, J.P., Azeda, C., Sá, E., Metelo, I., Costa, M.J. & Caçador, I. (2014). Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal) J. Sea Res., 93, pp. 101-111. DOI: 10.1016/j.seares.2014.01.003
  14. Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H. & Date, T. (2005). Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Marine pollution bulletin. 50, no. 10. pp. 1103-1114. DOI: 10.1016/j.marpolbul.2005.04.030.
  15. Fang, C., Wu, Y. H., Sun, C., Wang, H., Cheng, H., Meng, F. X., ... & Xu, X. W. (2019). Erythrobacter zhengii sp. nov., a bacterium isolated from deep-sea sediment. International journal of systematic and evolutionary microbiology. 69, no. 1. pp. 241-248. DOI: 10.1099/ijsem.0.003136.
  16. Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental science & technology. 50, no.11. pp. 5774-5780. DOI: 10.1021/acs.est.6b00816.
  17. Gibson, R., Wang, M. J., Padgett, E., & Beck, A. J. (2005). Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere. 61, no.9. pp. 1336-1344. DOI: 10.1016/j.chemosphere.2005.03.072.
  18. Gupta, S. S., & Bhattacharyya, K. G. (2008). Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of environmental management. 87, no.1. pp. 46-58. DOI: 10.1016/j.jenvman.2007.01.048.
  19. He, K., Chen, Y., Tang, Z., & Hu, Y. (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science and Pollution Research. 23, no.3. pp. 2778-2788. DOI: 10.1007/s11356-015-5422-6.
  20. Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution. 160. pp.42-48. DOI: 10.1016/j.envpol.2011.08.052.
  21. Holmes, L. A., Turner, A., & Thompson, R. C. (2014). Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry. 167. pp. 25-32. DOI: 10.1016/j.marchem.2014.06.001.
  22. Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology. 51, no. 8. pp.4714-4721. DOI: 10.1021/acs.est.7b00635.
  23. Hu, X. Y., Wen, B., & Shan, X. Q. (2003). Survey of phthalate pollution in arable soils in China. Journal of environmental monitoring. 5, no.4. pp. 649-653. DOI: 10.1039/B304669A.
  24. Jiang, X. W., Cheng, H., Huo, Y. Y., Xu, L., Wu, Y. H., Liu, W. H., ... & Zheng, B. W. (2018). Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594. Scientific reports. 8, no. 1. pp. 1-9. DOI: 10.1038/s41598-018-19279-0.
  25. Johansen, M. P., Cresswell, T., Davis, J., Howard, D. L., Howell, N. R., & Prentice, E. (2019). Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. Water research.158. pp. 392-400. DOI: 10.1016/j.watres.2019.04.029.
  26. Kakaei, S., Khameneh, E. S., Rezazadeh, F., & Hosseini, M. H. (2020). Heavy metal removing by modified bentonite and study of catalytic activity. Journal of Molecular Structure, 1199. pp.126989. DOI: 10.1016/j.molstruc.2019.126989.
  27. Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine environmental research, 120, pp. 1-8. DOI: 10.1016/j.marenvres.2016.07.004.
  28. Kubilay, Ş., Gürkan, R., Savran, A., & Şahan, T. (2007). Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption. 13, no. 1. pp. 41-51. DOI: 10.1007/s10450-007-9003-y.
  29. Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., & Jo, H. Y. (2010). Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibria of sorption. Journal of Hazardous Materials. 174, no. 1-3. pp.307-313. DOI: 10.1016/j.jhazmat.2009.09.052.
  30. Li, K., Ma, D., Wu, J., Chai, C., & Shi, Y. (2016). Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China. Chemosphere. 164. pp. 314-321. DOI: 10.1016/j.chemosphere.2016.08.068.
  31. Manafi, S., & Nasab, M. M. (2017). Hydrophobic coating production with its hydrophobic properties and pollution self-removed by concentrations of silica nanoparticles. 49. pp. 266-272.
  32. Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution. 227. pp.139-145. DOI: 10.1016/j.envpol.2017.04.034.
  33. Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., & Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of hazardous materials. 393. pp. 122515. DOI: 10.1016/j.jhazmat.2020.122515
  34. Mehdinia, A., Dehbandi, R., Hamzehpour, A., & Rahnama, R. (2020). Identification of microplastics in the sediments of southern coasts of the Caspian Sea, north of Iran. Environmental Pollution. 258. pp. 113738. DOI: 10.1016/j.envpol.2019.113738.
  35. Mincer, T. J., Zettler, E. R., & Amaral-Zettler, L. A. (2016). Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility. In Hazardous Chemicals Associated with Plastics in the Marine Environment. pp. 221-233. DOI: 10.1007/698_2016_12.
  36. Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing. 92, no.1-2.pp. 42-48. DOI: 10.1016/j.minpro.2009.02.005.
  37. Müller, A., Becker, R., Dorgerloh, U., Simon, F. G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution. 240. pp.639-646. DOI: 10.1016/j.envpol.2018.04.127.
  38. Ozdes, D., Duran, C., & Senturk, H. B. (2011). Adsorptive removal of Cd (II) and Pb (II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management. 92, no.12. pp. 3082-3090. DOI: 10.1016/j.jenvman.2011.07.022.
  39. Park, S., Chen, S., & Yoon, J. H. (2020). Erythrobacter insulae sp. nov., isolated from a tidal flat. International journal of systematic and evolutionary microbiology. 70, no. 3. pp. 1470-1477. DOI: 10.1099/ijsem.0.003824.
  40. Peixoto, D., Pinheiro, C., Amorim, J., Oliva-Teles, L., Guilhermino, L., & Vieira, M. N. (2019). Microplastic pollution in commercial salt for human consumption: A review. Estuarine, Coastal and Shelf Science. 219.pp. 161-168. DOI: 10.1016/j.ecss.2019.02.018.
  41. Ponce-Lira, B., Otazo-Sánchez, E. M., Reguera, E., Acevedo-Sandoval, O. A., Prieto-Garcia, F., & González-Ramírez, C. A. (2017). Lead removal from aqueous solution by basaltic scoria: adsorption equilibrium and kinetics. International Journal of Environmental Science and Technology. 14, no. 6. pp. 1181-1196. DOI: 10.1007/s13762-016-1234-6.
  42. Rao, R. A. K., & Kashifuddin, M. (2016). Adsorption studies of Cd (II) on Ball Clay: comparison with other natural clays. Arabian Journal of Chemistry. 9. pp. S1233-S1241. DOI: 10.1016/j.arabjc.2012.01.010.
  43. Ravikumar, S., Ganesh, I., Yoo, I. K., & Hong, S. H. (2012). Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochemistry. 47, no.5. pp. 758-765. DOI: 10.1016/j.procbio.2012.02.007.
  44. Rhind, S. M., Kyle, C. E., Ruffie, H., Calmettes, E., Osprey, M., Zhang, Z. L., ... & McKenzie, C. (2013). Short-and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures. Environmental pollution. 181. pp. 262-270. DOI: 10.1016/j.envpol.2013.06.011.
  45. Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil? pp. 6453-6454. DOI: 10.1021/es302011r.
  46. Rillig, Matthias C. (2018). Microplastic disguising as soil carbon storage. 6079-6080.‎ DOI: 10.1021/acs.est.8b02338.
  47. Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M., & Hoh, E. (2013). Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environmental science & technology. 47, no. 24. pp.13976-13984. DOI: 10.1021/es403605f.
  48. Rodrigues, M. O., Gonçalves, A. M. M., Gonçalves, F. J. M., & Abrantes, N. (2020). Improving cost-efficiency for MPs density separation by zinc chloride reuse. MethodsX. 7. pp.100785. DOI: 10.1016/j.mex.2020.100785.
  49. Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental science & technology. 52, no. 6. pp.3591-3598. DOI: 10.1021/acs.est.7b06003.
  50. Seyfi, S., Azadmehr, A. R., Gharabaghi, M., & Maghsoudi, A. (2015). Usage of Iranian scoria for copper and cadmium removal from aqueous solutions. Journal of Central South University. 22, no.10. pp. 3760-3769. DOI: 10.1007/s11771-015-2920-0.
  51. Sharma, S., & Chatterjee, S. (2017). Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research. 24, no. 27. pp. 21530-21547. DOI: 10.1007/s11356-017-9910-8.
  52. Škrbića, B.D., Ji, Y., Đurišić-Mladenovića, N. & Zhao, J. (2016). Occurrence of the phthalate esters in soil ‎and street dust samples from the Novi Sad city area, Serbia, and the influence on the ‎children's and adults' exposure. J. Hazard Mater., 312, pp. 272-279‎. DOI: 10.1016/j.jhazmat.2016.03.045.
  53. Sundbæk, K. B., Koch, I. D. W., Villaro, C. G., Rasmussen, N. S., Holdt, S. L., & Hartmann, N. B. (2018). Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. Journal of Applied Phycology. 30, no.5. pp.2923-2927. DOI: 10.1007/s10811-018-1472-8.
  54. Tohdee, K., & Kaewsichan, L. (2018). Enhancement of adsorption efficiency of heavy metal Cu (II) and Zn (II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering. 6, no. 2. pp. 2821-2828. DOI: 10.1016/j.jece.2018.04.030.
  55. Turner, A., & Holmes, L. A. (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environmental chemistry. 12, no. 5. pp. 600-610. DOI: 10.1071/EN14143.
  56. Türkmen, M., & Budur, D. (2018). Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food chemistry. 254. pp. 256-259. DOI: 10.1016/j.foodchem.2018.02.010.
  57. Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong, L. (2008). Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy, 93, no. 1-2. pp. 1-9. DOI: 10.1016/j.hydromet.2008.02.009.
  58. Vedolin, M. C., Teophilo, C. Y. S., Turra, A., & Figueira, R. C. L. (2018). Spatial variability in the concentrations of metals in beached microplastics. Marine pollution bulletin, 129, no. 2. pp. 487-493. DOI: 10.1016/j.marpolbul.2017.10.019.
  59. Veli, S., & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of hazardous materials. 149, no. 1. pp. 226-233. DOI: 10.1016/j.jhazmat.2007.04.109.
  60. Viršek, M. K., Lovšin, M. N., Koren, Š., Kržan, A., & Peterlin, M. (2017). Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Marine pollution bulletin. 125, no. 1-2. pp.301-309. DOI: 10.1016/j.marpolbul.2017.08.024.
  61. Vogler, M., Müller, A., Braun, U., & Grathwohl, P. (2019, January). Sampling and sample preparation for analysis of microplastics in soils. In Geophysical Research Abstracts. 21, no. 1. pp. 1-1.
  62. Vikelsøe, J., Thomsen, M., & Carlsen, L. (2002). Phthalates and nonylphenols in profiles of differently dressed soils. Science of the Total Environment, 296, no. 1-3. pp.105-116. DOI: 10.1016/S0048-9697(02)00063-3.
  63. Wan, M. W., Kan, C. C., Rogel, B. D., & Dalida, M. L. P. (2010). Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydrate Polymers. 80, no. 3. pp.891-899. DOI: 10.1016/j.carbpol.2009.12.048.
  64. Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., & Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences. 87. pp. 272-280. DOI: 10.1016/j.jes.2019.07.006.
  65. Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C., & Lam, P. K. (2018). Microplastic pollution in China's inland water systems: a review of findings, methods, characteristics, effects, and management. Science of the Total Environment. 630. pp. 1641-1653. DOI: 10.1016/j.scitotenv.2018.02.300.
  66. Zhang, S., Yang, X., Gertsen, H., Peters, P., Salánki, T., & Geissen, V. (2018). A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment. 616. pp. 1056-1065. DOI: 10.1016/j.scitotenv.2017.10.213.
Go to article

Authors and Affiliations

Sara Seyfi
1
Homayoun Katibeh
1
Monireh Heshami
2

  1. Mining Exploration in Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  2. Mineral Processing in Mining Engineering, University of Kashan, Kashan, Iran
Download PDF Download RIS Download Bibtex

Abstract

Environmental applications of carbon nanotubes (CNTs) have recently attracted worldwide attentiondue to their excellent adsorption capacities and promising physical, chemical and mechanical properties, as well asthe preparation of novel membranes with attractive features for water purification. This paper critically reviews therecent progress on the preparation and applications of CNT based membranes in water and wastewater treatment. Various synthesis techniques for the preparation of CNT based membranes are discussed. The functionalization ofCNTs, which involves chemical/physical modification of pristine CNTs with different types of functional groups,improves the capabilities of CNT for water and wastewater treatment and/or removal of waterborne contaminants.The CNT-based membrane applications are found to possess a variety of advantages, including improving waterpermeability, high selectivity and antifouling capability. However, their applications at full scale are still limitedby their high cost. Finally, we highlight that CNT membranes with promising removal efficiencies for respectivecontaminants can be considered for commercialization and to achieve holistic performance for the purpose ofwater treatment and desalination. This paper may provide an insight for the development of CNT based membranesfor water purification in the future. With their tremendous separation performance, low biofouling potential andultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment, especiallydesalination.
Go to article

Bibliography

  1. Adamczak, M., Kaminska, G. & Bohdziewicz, J. (2019). Preparation of polymer membranes by in situ interfacial polymerization. International Journal of Polymer Science, vol. 219, Article ID 6217924, 13 pages, DOI: 10.1155/2019/6217924
  2. Ahmad, A., El-Nour, K.A., Ammar, R.A.A. & Al-Warthan, A., (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization., Arabian Journal of Chemistry, 5, pp. 1–23, DOI: 10.1016/j.arabjc.2010
  3. Ahmed, F., Santos, C.M., Mangadlao, J., Advincula, R. & Rodrigues, D.F. (2013). Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: performance and toxicity testing, Water Res., 47, 12, pp. 3966–3975, DOI: 10.1016/j.watres.2012.10.055
  4. Ahn, C.H, Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.H. Bae, S.S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem.,18, pp. 1551–1559, DOI: 10.1016/j.jiec.2012.04.005.
  5. Ajmani, G.S., Goodwin, D., Marsh, K., Fairbrother, D.H., Schwab, K.J., Jacangelo, J.G. & Huang, H. (2012). Modification of low pressure membranes with carbon nanotube layers for fouling control, Water Res., 46, 17, pp. 5645–5654, DOI:10.1016/j.watres.2012.07.059.
  6. Ali, S., Ur Rehman, S.A., Luan, H.Y., Usman Farid, M. & Huang, H. (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646, pp.1126–1139, DOI: 10.1016/j.scitotenv.2018.07.348.
  7. Al-Hakami, S.M., Khalil, A.B., Laoui, T. & Atieh, M.A. (2013). Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg. Chem. Appl.,458943, DOI: 10.1155/2013/458943.
  8. Al-Khaldi, F.A., Abu-Sharkh, B., Abulkibash, A.M. & Atieh, M.A. (2013). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalin. Water Treat., 53, pp. 1–13, DOI: 10.1080/19443994.2013.847805.
  9. Ansari, R. & Kazemi, E. (2012). Detailed investigation on single water molecule entering carbon nanotubes. App. Math. Mech., 33, pp.1287–1300, DOI: 10.1007/s10483-012-1622-8.
  10. Atieh, M.A., Bakather, O.Y., Tawabini, B.S., Bukhari, A.A., Khaled, M., Alharthi, M., Fettouhi, M. & Abuilaiwi, F.A. (2010). Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes, J. Nanomater., Article ID 232378, pp.1-9, DOI: 10.1155/2010/232378.
  11. Baek, Y., Kim, C., Kyun, D., Kim, T., Seok, J., Hyup, Y., Hyun, K., Seek, S., Cheol, S., Lim, J., Lee, K. & Yoon, J. (2014), High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci., 460, 171–177, DOI: 10.1016/j.memsci.2014.02.042.
  12. Bahgat, M., Farghali, A.A., El Rouby, W.M.A. & Khedr, M.H. (2011). Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications, J. Anal. Appl. Pyrolysis, 92, 2, pp. 307–313, DOI: 10.1016/j.jaap.2011.07.002.
  13. Bai, L., Liang, H., Crittenden, J., Qu, F., Ding, A., Ma, J., Du, X., Guo, S. & Li, G. (2015), Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by nom fractions. J. Membr. Sci., 492, 400–411, DOI: 10.1016/j.memsci.2015.06.006.
  14. Balasubramanian, K. & Burghard, M. (2005). Chemically functionalized carbon nanotubes, Small, 1, pp. 180–192, DOI: 10.1002/smll.200400118.
  15. Bhadra, M., Roy, S. & Mitra, S. (2013). Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep. Purif. Technol., 120, pp. 373–377, DOI: 10.1016/j.seppur.2013.10.020.
  16. Bodzek, M. & Konieczny, K. (2017). Membrane techniques in the treatment of geothermal water for fresh and potable water production. [In:] Geothermal Water Management, Bundschuh, J. & Tomaszewska, B. (Eds.). CRC Press/Balkema, Taylor and Francis Group, Ch. 8, pp. 157–231, DOI: 10.1201/9781315734972.
  17. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45, 4, pp. 4-19. DOI: 10.24425/aep.2019.130237.
  18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review. Archives of Environmental Protection, 45 (1), pp. 3-18, DOI: 10.24425/aep.2019.126419.
  19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020a). Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes. Critical Reviews in Environmental Science and Technology, 50, 15, pp. 1515-1579, DOI: 10.1080/10643389.2019.1664258.
  20. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020b). The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desalination and Water Treatment, 185, pp. 1-26, DOI: 10.5004/dwt.2020.25454
  21. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020c). The application for nanotechnology and nanomaterials in water and wastewater treatment. Membranes, photocatalysis and disinfection, Desalination and Water Treatment, 186, pp. 88–106, DOI:10.5004/dwt.2020.25231
  22. Brady-Estévez, A.S., Kang, S. & Elimelech, M. (2008). A single‐walled‐carbon‐nanotube filter for removal of viral and bacterial pathogens, Small, 4, 4, pp. 481–484. DOI: 10.1002/smll.200700863.
  23. Brady-Estévez, A.S., Schnoor, M.H., Kang, S. & Elimelech, M. (2010). SWNT–MWNT hybrid filter attains high viral removal and bacterial inactivation, Langmuir, 26, pp. 19153–19158. DOI: 10.1021/la103776y.
  24. Brunet, L., Lyon, D., Zodrow, K., Rouch, J.-C., Caussat, B., Serp, P., Remigy, J.-C., Wiesner, M. & Alvarez, P.J. (2008). Properties of membranes containing semi- dispersed carbon nanotubes, Environ. Eng. Sci., 25, pp. 565–575. DOI: 10.1089/ees.2007.0076.
  25. Celik, E., Park, H., Choi, H. & Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45, pp. 274–282. DOI: 10.1016/j.watres.2010.07.060.
  26. Chan, Y. & Hill, J.M. (2012). Modeling on ion rejection using membranes comprising ultrasmall radii carbon nanotubes, Eur. Phys. J. B, 85, pp. 56. DOI: 10.1140/epjb/e2012-21029-0.
  27. Chan, Y. & Hill, J.M. (2013). Ion selectivity using membranes comprising functionalized carbon nanotubes, J. Math. Chem., 53, pp. 1258–1273. DOI: 10.1007/s10910-013-0142-y.
  28. Chan ,W.-F., Chen, H.-Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E. & Johnson, J.K. (2013). Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7, pp. 5308–5319.; DOI: 10.1021/nn4011494.
  29. Chen, H., Li, J., Shao, D., Ren, X. & Wang, X. (2012). Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution, Chem. Eng. J., 210, pp. 475–481. DOI: 10.1016/j.cej.2012.08.082.
  30. Chen, X., Qiu, M., Ding, H., Fu, K. & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nanoscale, 8, pp. 5696–5705./ DOI: 10.1039/c5nr08697c.
  31. Chi, M.F., Wu,W.L., Du,Y., Chin,C.J. & Lin, C.C. (2016). Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface function-nalization coupled with medium nutrition level, J Hazard. Mater., 318, pp. 507-514. DOI: 10.1016/j.jhazmat.2016.07.013.
  32. Choi, J., Jegal, J. & Kim, W. (2006). Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, J. Membr. Sci., 284, pp. 406–415. DOI: 10.1016/j.memsci.2006.08.013.
  33. Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D. & Hilal, N. (2017). Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination, 402, pp. 123–132. DOI: 10.1016/j.desal.2016.09.030.
  34. Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination, J.Phys. Chem. B, 112, pp. 1427–1434. DOI: 10.1021/jp709845u.
  35. Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ Sci., 4, pp. 751-759. DOI: 10.1039/C0EE00481B.
  36. Dalmas F., Chazeau, L., Gauthier, C., Masenelli-Varlot, K., Dendievel, R., Cavaillé, J.Y. & Forró, L. (2005). Multiwalled carbon nanotube/polymer nanocomposites: processing and properties, J. Polym. Sci. B Polym. Phys., 43, pp.1186–1197. DOI: 10.1002/polb.20409.
  37. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M. & Ramakrishna, S. (2014a). Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354, pp. 160–179. DOI: 10.1016/j.desal.2014.09.032.
  38. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S. & Chowdhury, Z.Z. (2014b). Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336, pp. 97–109. DOI: 10.1016/j.desal.2013.12.026.
  39. Daer, S., Kharraz, J., Giwa, A. & Hasan, S.W. (2015). Recent applications of nanomaterials in water desalination: a critical review and future opportunities, Desalination, 367, pp. 37–48. DOI: 10.1016/j.desal.2015.03.030.
  40. de Lannoy, C.-F., Soyer, E. & Wiesner, M.R. (2013). Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization, J. Membr. Sci.,447, pp. 395–402. DOI: 10.1016/j.memsci.2013.07.023.
  41. Dobrzańska-Danikiewicz, A.D., Łukowiec, D., Cichocki, D. & Wolany, W. (2015). Nanokompozyty złożone z nanorurek węglowych pokrytych nanokryształami metali szlachetnych, Open Access Library, Annal V Issue 2, International OCSCO World Press. (in Polish). http://www.openaccesslibrary.com/vol22015/cover.pdf.
  42. Dufresne, A., Paillet, M., Putaux, J.L., Canet, R., Carmona, F., Delhaes, P. & Cui, S. (2002). Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites, J. Mater. Sci., 37, pp. 3915–3923. DOI: 10.1023/A:1019659624567.
  43. Dumée, L., Campbell, J.L., Sears, K., Schutz, J., Finn, N., Duke, M. & Gray, S. (2011). The Impact of hydrophobic coating on the performance of carbon nanotube bucky paper membranes in membrane distillation, Desalination, 283, pp. 64–67. DOI: 10.1016/j.desal.2011.02.046.
  44. Engel, M. & Chefetz, B. (2016). Adsorption and desorption of dissolved organic matter by carbon nanotubes: effects of solution chemistry, Environ. Pollut., 213, pp. 90–98. DOI: 10.1016/j.envpol.2016.02.009.
  45. Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., Noy, A. & Bakaijn, O. (2008). Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci., 105, pp. 17250–17255. DOI: 10.1073/pnas.0710437105.
  46. Goh, P.S, Ismail, A.F. & Ng, B.C. (2013a). Carbon nanotubes for desalination: Performance evaluation and current hurdles, Desalination, 308, pp. 2–14. DOI: 10.1016/j.desal.2012.07.040.
  47. Goh, K., Setiawan, L., Wei, L., Jiang, W., Wang, R. & Chen, Y. (2013b). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446, pp. 244–254. DOI: 10.1016/j.memsci.2013.06.022.
  48. Goh, P.S. & Ismail, A.F. (2015). Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology, Desalination, 356, pp. 115–128. DOI: 10.1016//j.desal.2014.10.001
  49. Goh, K., Karahan, H.E., Wei, L., Bae, T.-H., Fane, A.G., Wang, R. & Chen, Y. (2016a). Carbon nanomaterials for advancing separation membranes: a strategic perspective, Carbon, 109, pp. 694–710. DOI: 10.1016/j.carbon.2016.08.077.
  50. Goh, P.S., Ismail, A.F. & Hilal, N. (2016b). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination, 380, pp. 100–104. DOI: 10.1016/j.desal.2015.06.002.
  51. Goh, P.S., Matsuura, T., Ismail, A.F. & Hilal, N. (2016c). Recent trends in membranes and membrane processes for desalination, Desalination, 391, pp. 43–60. DOI: 10.1016/j.desal.2015.12.016
  52. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J. & Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater., 164, 2-3, pp. 1517-1522. DOI: 10.1016/j.jhazmat.2008.09.072.
  53. Guo, J., Zhang, Q., Cai, Z. & Zhao, K. (2016). Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane, Sep. Purif. Technol., 161, pp. 69-79. DOI: 10.1016/j.seppur.2016.01.036.
  54. Han, Y., Xu, Z. & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23, pp. 3693–3700. DOI: 10.1002/adfm.201202601.
  55. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. & Bachas, L.G. (2004). Aligned multiwalled carbon nanotube membranes, Science, 303, pp. 62–65. DOI: 10.1126/science.1092048.
  56. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P, Noy, A. & Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, pp. 1034–1037. DOI: 10.1126/science.1126298.
  57. Hoon, C., Baek, Y., Lee, C., Ouk, S., Kim, S., Lee, S., Kim, S., Seek, S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination, J.Ind. Eng. Chem., 18, pp. 1551–1559. DOI: 10.1016/j.jiec.2012.04.005.
  58. Hou, C.-H., Liu, N.-L., Hsu, H.-L. & Den, W. (2014). Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Sep. Purif. Technol., 130, pp. 7–14. DOIL: 10.1016/j.seppur.2014.04.004.
  59. Huczko, A., Kurcz, M. & Popławska, M. (2015). Nanorurki węglowe. Otrzymywanie, charakterystyka, zastosowania, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  60. Hummer, G., Rasaiah,i J.C. & Noworyta, J.P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, pp. 188–190. DOI: 10.1038/35102535
  61. Ihsanullah, F.A., Al-Khaldi, B. Abu-sharkh, M., Khaled Atieh, M.A., Nasser, M.S., Laoui, T., Saleh, T.A., Agarwal, S., Tyagi, I. & Gupta, V.K. (2015a). Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J.Mol.Liq., 204, pp. 255–263. DOI: 10.1016/j.molliq.2015.01.033.
  62. Ihsanullah, H.A., Asmaly, T.A., Saleh, T., Laoui, V.K., Gupta, M.A. & Atieh, M.A. (2015b). Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties, J. Mol. Liq., 206, pp 176–182. DOI: 10.1016/j.molliq.2015.02.028.
  63. Ihsanullah, T.L., Marwan, K., Muataz, A.A., Adnan, M.A., Amjad, B.K. & Aamir, A. (2015c). Novel anti-microbial membrane for desalination pretreatment: a silver nanoparticle-doped carbon nanotube membrane, Desalination, 376, pp. 82–93. DOI: 10.1016/j.desal.2015.08.017.
  64. Ihsanullah A.A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M. & Atieh, M.A. (2016a). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157, pp. 141–161. DOI: 10.1016/j.seppur.2015.11.039.
  65. Ihsanullah, A., Al Amer, A.M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M.A., Hilal, N. (2016b). Fabrication and antifouling behaviour of a carbon nanotube membrane, Mater. Des., 89, pp. 549–558. DOI: 10.1016/j.matdes.2015.10.018.
  66. Ihsanullah, F.A., Al-Khaldi, B., Abu-sharkh, M., A., Qureshi, M.I., Laoui, T. & Atieh, M.A. (2016c). Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes, Desalin.Water Treat., 57, pp. 7232–7244. DOI: 10.1080/19443994.2015.102184.
  67. Ihsanullah, A.A. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep Purif Technol., 209, pp. 307–337. DOI: 10.1016/j.seppur.2018.07.043.
  68. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y. & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene, Environmental Science & Technology, 39, pp. 1378-1383. DOI: 10.1021/es048729l.
  69. Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, J. Environ. Sci., 21, 4, pp. 539–544. DOI: 10.1016/S1001-0742(08)62305-0.
  70. Kaminska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: Characterization and micropollutants removal analysis, Desalin. Water Treat., 57, pp. 1344–1353. DOI: 10.1080/19443994.2014.1002277.
  71. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146, 1-2, pp. 283-288. DOI: 10.1016/j.jhazmat.2006.12.019.
  72. Kang, S., Pinault, M., Pfefferle, L.D. & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 23, pp. 8670–8673. DOI: 10.1021/la701067r.
  73. Kang, S., Herzberg, M., Rodrigues, D.F. & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter, Langmuir, 24, pp. 6409–6413. DOI: 10.1021/la800951v.
  74. Kang G.D., Cao Y.M. (2012). Development of antifouling reverse osmosis membranes for water treatment: a review, Water Res., 46, 3, pp. 584–600. DOI: 10.1016/j.watres.2011.11.041.
  75. Kar, S., Bindal, R.C. & Tewari, P.K. (2012). Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7, pp. 385–389. DOI: 10.1016/j.nantod.2012.09.002.
  76. Khalid, A., Al-Juhani, A.A., Al-Hamouz, O.C., Laoui, T., Khan, Z. & Atieh, M.A. (2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, pp. 134–144./ DOI: 10.1016/j.desal.2015.04.001.
  77. Kim, E.-S., Hwang, G., Gamal El-Din, M. & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., pp. 394-395, 37-48. DOI: 10.1016/j.memsci.2011.11.041.
  78. Kim, H.J., Choi, K., Baek, Y., Kim, D., Shim, J., Yoon, J. & Lee, J. (2014). High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interf., 6, pp. 2819–2829. DOI: 10.1021/am405398f.
  79. Kochkodan, V. & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination, 356, pp. 187–207. DOI: 10.1016/j.desal.2014.09.015.
  80. Lam, C.-W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2008). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol., 36, 3, pp. 189–217. DOI: 10.1080/10408440600570233.
  81. Lee, C. & Baik, S. (2010). Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity, Carbon, 48, pp. 2192–2197. DOI: 10.1016/j.carbon.2010.02.020.
  82. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J. & Kim, Y.H. (2015). A carbon nanotube wall membrane for water treatment, Nat. Commun., 6, pp. 7109. DOI: 10.1038/ncomms8109.
  83. Lee, J., Jeong, S. & Liu, Z. (2016). Progress and challenges of carbon nanotube membrane in water treatment, Crit. Rev. Environ. Sci. Technol., 46, pp. 999–1046. DOI: 10.1080/10643389.2016.1191894.
  84. Lee, J.-G., Lee, E.-J., Jeong, S., Guo, J., An, A.K., Guo, H., Kim, J., Leiknes, T. & Ghaffour, N. (2017). Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation, J. Membr. Sci., 526, pp. 395-408. DOI: 10.1016/j.memsci.2016.12.045
  85. Li, J., Chen, S., Sheng, G., Hu, J., Tan, X. & Wang, X., (2011). Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes, Chem. Eng. J., 166, 2, pp. 551-558. DOI: 10.1016/j.cej.2010.11.018.
  86. Li, S., Liao, G., Liu, Z., Pan, Y., Wu, Q., Weng, Y., Zhang, X., Yang, Z. & Tsui O.K.C. (2014). Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes, J. Mater. Chem. A., 2, pp. 12171–12176. DOI: 10.1039/C4TA02119C
  87. Li, S., He, M., Li, Z., Li, D. & Pan, Z. (2017). Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium, J. Mole. Liquids, 230, pp. 520–528. DOI: 10.1016/j.molliq.2017.01.027
  88. Liu, L., Son, M., Chakraborty, S. & Bhattacharjee, C. (2013). Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by- layer technique: characterization and its anti- protein fouling properties for water treatment, Desalin. Water Treat., 51, pp. 6194–6200. DOI: 10.1080/19443994.2013.780767.
  89. Liu, J., Wang, Y., Yu, Z., Cao, X., Tian, L., Sun, S. & Wu, P. (2017). A comprehensive analysis of blue water scarcity from the production, consumption and water transfer perspectives, Ecol. Indic., 72, pp. 870–880. DOI: 10.1016/j.ecolind.2016.09.021.
  90. Lu, C. & Chiu, H. (2006). Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci., 61, 4, pp. 1138–1145. DOI: 10.1016/j.ces.2005.08.007.
  91. Madhura, L., Kanchi, S., Myalowenkosi, I., Singh, S., Bisetty, K. & Inamuddin (2018). Membrane technology for water purification, Environmental Chemistry Letters, 16, pp. 343–365. DOI: 10.1007/s10311-017-0699-y.
  92. Majumder, M., Chopra, N., Andrews, R. & Hinds, B.J. (2005). Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, pp. 44. DOI: 10.1038/438044a.
  93. Manawi, Y., Kochkodan, V., Ali Hussein, M., M.A. Khaleel, M.A., Khraisheh M. & Hilal, N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, pp. 69–88. DOI: 10.1016/j.desal.2016.02.015.
  94. Manawi, Y.M., Ihsanullah, A. Samara Al-Ansari, T. & Atieh, M.A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method, Materials, 11, pp. 822. DOI: 10.3390/ma11050822.
  95. Mauter, M.S. & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol., 42, 16, pp. 5843–5859. DOI: 10.1021/es8006904.
  96. McCarthy B., Coleman J.N., Czerw R., Dalton A.B., Panhuis M.I.H., Maiti A., Drury A., Bernier P., Nagy J.B., Lahr B., Byrne H.J., Carroll D.L., Blau W.J. (2002). A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer, J. Phys. Chem. B 106, pp. 2210–2216. DOI: 10.1021/jp013745f.
  97. McGinnis R.L., Reimund K., Ren L. Xia M.R., Chowdhury X., Sun M., Abril J.D., Moon M.M., Merrick J., Park K.A., Stevens J.R., McCutcheon B.D., Freeman. (2018). Large-scale polymeric carbon nanotube membranes with sub–1.27-nm pores, Sci. Adv. 4, e1700938. DOI: 10.1126/sciadv.1700938.
  98. Mechrez G., Krepker M.A., Harel Y., Lellouche J.-P., Segal E. (2014). Biocatalytic carbon nanotube paper: A ‘one-pot’ route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation, J. Mater. Chem. B, 2, pp. 915–922. DOI: 10.1039/C3TB21439G.
  99. Mehwish N, Kausar A., Siddiq M. (2015). High-performance polyvinylidene fluoride/poly (styrene – butadiene – styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes, Iran. Polym. J. 24, pp. 549–559. DOI: 10.1007/s13726-015-0346-z.
  100. Morsi R.E., Alsabagh A.M., Nasr S.A., Zaki M.M. (2017). Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Int. J. Biol. Macromol., 97, pp. 264-269. DOI: 10.1016/j.ijbiomac.2017.01.032.
  101. Mubarak N.M., Alicia R.F., Abdullah E.C., Sahu J.N., Haslija A.B.A., Tan J. (2013). Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar, J. Environ. Chem. Eng., 1 (3), pp. 486-495. DOI: 10.1016/j.jece.2013.06.011.
  102. Nie C., Yang Y., Cheng C., Ma L., Deng J., Wang L., Zhao C. (2017). Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications, Acta. Biomater., 51, pp. 479-494. DOI: 10.1016/j.actbio.2017.01.027.
  103. Ntim, S.A., Mitra, S. (2011). Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes, J. Chem. Eng. Data, 56, 2077-2083. DOI: https://doi.org/10.1016/j.actbio.2017.01.027.
  104. Ntim, S.A., Mitra, S. (2012). Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification, J. Colloid Interface Sci., 375 (1), 154-159. DOI: 10.1016/j.jcis.2012.01.063.
  105. Park O.-K., Kim N.H., Lau K.-t., Lee J.H. (2010a). Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Mater. Lett., 64, pp. 718–721. DOI: 10.1016/j.matlet.2009.12.048.
  106. Park J., Choi W., Cho J., Chun B.H., Kim S.H., Lee K.B., Bang J. (2010b). Carbon nanotube based nanocomposite desalination membranes from layer-by-layer assembly, Desalin. Water Treat., 15, pp. 76–83. DOI: 10.5004/dwt.2010.1670.
  107. Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B., Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B. (2010c). Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes, Desalin. Water Treat., 15, pp. 198–204. DOI: 10.5004/dwt.2010.1686.
  108. Park S.-M., Jung J., Lee S., Baek Y., Yoon J., Seo D.K., et al. (2014). Fouling and rejection behavior of carbon nanotube membranes, Desalination, 343, pp. 180–186. DOI: 10.1016/j.desal.2013.10.005.
  109. Peng X., Jin J., Ericsson E.M., Ichinose I. (2007). General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129, pp. 8625–8633. DOI: 10.1021/ja0718974.
  110. Pillay K., Cukrowska E.M., Coville N.J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater., 166 (2-3), pp. 1067-1075. DOI: 10.1016/j.jhazmat.2008.12.011.
  111. Qadir D., Mukhtar H., Keong L.K. (2017). Mixed matrix membranes for water purification applications, Sep. Purif Rev. 46, pp. 62–80. DOI: 10.1080/15422119.2016.1196460.
  112. Raghavendra S. Hebbar, Arun M. Isloor, Inamuddin, Asiri A.M. (2017). Carbon nanotube- and graphene-based advanced membrane materials for desalination, Environ Chem. Lett., 15, pp. 643–671. DOI: 10.1007/s10311-017-0653-z.
  113. Rashid M., Ralph S.F. (2017). Carbon nanotube membranes: synthesis, properties, and future filtration applications, Nanomaterials, 7 (5), 99-1-99-28. DOI: 10.3390/nano7050099.
  114. Ratto T.V., Holt J.K., Szmodis A.W. (2010). Membranes with embedded nanotubes for selective permeability, Patent Application No. 20100025330 (2010), https://pdfpiw.uspto.gov/.piw?Docid=07993524.
  115. Ren X., Chen C., Nagatsu M., Wang X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2–3) pp. 395–410. DOI: 10.1016/j.cej.2010.08.045.
  116. Roy S., Jain V., Bajpai R., Ghosh P., Pente A.S., Singh B.P., Misra D.S. (2012). Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale, J. Phys. Chem. C, 116, pp. 19025–19031. DOI: 10.1021/jp305677h.
  117. Rodrigues D.F., Elimelech M. (2010). Toxic Effects of Single-Walled Carbon Nanotubes in the Development of E. coli Biofilm, Environmental Science & Technology, 44, pp. 4583-4589. DOI: 10.1021/es1005785.
  118. Scoville C., Cole R., Hogg J., Farooque O., and A. Russell, (2019). CarbonNanotubes, https://courses.cs.washington.edu/courses/csep590a/08sp/projects/CarbonNanotubes.pdf(Accessed:11.25.2019
  119. Sears K., Dumée L., Schütz J., She M., Huynh C., Hawkins S., Duke M., Gray S. (2010). Recent developments in carbon nanotube membranes for water purification and gas separation, Materials 3, pp. 127. DOI: 10.3390/ma3010127.
  120. Seckler, D., R. Barker R., Amarasinghe U. (1999). Water scarcity in the twenty-first century, Int. J. Water Resour. Dev., 15, pp. 29–42. DOI: 10.1080/07900629948916.
  121. Selvan M.E., Keffer D., Cui S., Paddison S. (2010). Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study, Molecular Simulation, 36 (7-8), pp. 568-578. DOI: 10.1080/08927021003752887.
  122. Shah P., Murthy C.N. (2013). Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437, pp. 90–98. DOI: 10.1016/j.memsci.2013.02.042.
  123. Shao D., Sheng G., Chen C., Wang X., Nagatsu M. (2010). Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes, Chemosphere, 79 (7), pp. 679-685. DOI: 10.1016/j.chemosphere.2010.03.008.
  124. Shawky H.A., Chae S., Lin S., Wiesner M.R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272, pp. 46–50. DOI: 10.1016/j.desal.2010.12.051.
  125. Shen J- Nan, Yu C- Chao., Hui min R., Cong jie Gao., Van Der Bruggen B. (2013). Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci., 442, pp. 18–26. DOI: 10.1016/j.memsci.2013.04.018.
  126. Shen Y.-X., Saboe P.O., Sines I.T., Erbakan M., Kumar M. (2014). Biomimetic membranes: a review, J. Membr. Sci., 454, pp. 359–381. DOI: 10.1016/j.memsci.2013.12.019.
  127. Song X., Wang L., Tang C.Y., Wang Z., Gao C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination, 369, pp. 1–9. DOI: 10.1016/j.desal.2015.04. 020.
  128. Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. (2006). Graphene-based composite materials, Nature, 442, pp. 282–286. DOI: 10.1038/nature04969.
  129. Sweetman L.J., Nghiem L., Chironi I., Triani G., In Het Panhuis M., Ralph S.F. (2012). Synthesis, properties and water permeability of swnt buckypapers, J. Mater. Chem. A, 22, pp. 13800–13810. DOI: 10.1039/C2JM31382K.
  130. Sweetman L.J., Alcock, L.J., McArthur J.D., Stewart E.M., Triani G., Ralph S.F. (2013), Bacterial filtration using carbon nanotube/antibiotic buckypaper membranes, J. Nanomater, 2013, 1-11. DOI: 10.1155/2013/781212.
  131. Tian M., Wang R., Goh K, Liao Y., Fane A.G. (2015). Synthesis and characterization of high performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes, J. Membr. Sci., 486, pp. 151–160. DOI: 10.1016.j.memsci.2015.03.054.
  132. Tiede K, Hassellov M., Breitbarth E., Chaudhry Q., Boxall A.B.A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr., A, 1216, pp. 503–509. DOI: 10.1016/j.chroma.2008.09.008.
  133. Tiraferri A., Vecitis C.D., Elimelech M. (2011). Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3, pp. 2869–2877. DOI: 10.1021/am200536p.
  134. Tofighy, M.A., Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (1), pp. 140-147. DOI: 10.1016/j.jhazmat.2010.09.008.
  135. Tunuguntla R.H., Henley R.Y., Yao Y.-C., Pham T.A., Wanunu M., Noy A. (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357, pp. 792–796. DOI: 10.1126/science.aan2438.
  136. Upadhyayula V.K., Deng S., Mitchell M.C., Smith G.B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (1), pp. 1–13. DOI: 10.1016/j.scitotenv.2009.09.027.
  137. Usman F.M., Luan H.-Y., Wang, Y., Huang H., An A.K., Jalil K.R. (2017). Increased adsorption of aqueous zinc species by Ar/O2 plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane, Chem. Eng. J., 325, pp. 239–248. DOI: 10.1016/j.cej.2017.05.020.
  138. Vatanpour V., Esmaeili M., Hossein M., Abadi D. (2014). Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Memb. Sci., 466, pp. 70–81. DOI: 10.1016/j.memsci.2014.04.031.
  139. Vatanpour V., Zoqi N. (2017). Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci., 396, pp. 1478–1489. DOI: 10.1016/j.apsusc.2016.11.195.
  140. Vuković G.D., Marinković A.D., Čolić M., Ristić M.Đ., Aleksić R., Perić-Grujić A.A.,Uskoković P.S. (2010). Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chem. Eng. J., 157 (1), pp. 238–248. DOI: 10.1016/j.cej.2009.11.026.
  141. Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett.,9, pp. 3137–3141. DOI: 10.1021/nl901260b
  142. Wang H., Yan N., Li Y., Zhou X., Chen J., Yu B., Gong M., Chen Q. (2012). Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions, J. Mater. Chem., 22 (18), pp. 9230-9236. DOI: 10.1039/C2JM16584H.
  143. Wang H., Dong Z., Na C. (2013). Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol, ACS Sustain. Chem. Eng., 1 (7), pp. 746–752. DOI: 10.1021/sc400048m.
  144. Wang S., Liang S., Liang P., Zhang X., Sun J., Wu S., Huang X. (2015a). In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance, J. Membr. Sci., 491, pp. 37–44. DOI: 10.1016/j.memsci.2015.05.014.
  145. Wang Y., Zhu J., Huang H., Cho H.-H. (2015b). Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms, J. Membr. Sci., 479, pp. 165–174. DOI: 10.1016/j.memsci.2015.01.034.
  146. Wang Y., Ma J., Zhu J., Ye N., Zhang X., Huang H. (2016a). Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products, Water Res., 92, pp. 104–112. DOI: 10.1016/j.watres.2016.01.038.
  147. Wang J., Zhang P., Liang B., Liu Y., Xu T., Wang L., Cao B., Pan K. (2016b). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8, pp. 6211–6218. DOI: 10.1021/acsami.5b12723.
  148. Wang, Y., Huang, H.,Wei, X. (2018). Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes, Chem. Eng. J., 333, pp. 66–75. DOI: 10.1016/j.cej.2017.09.149.
  149. WHO/UNICEF Joint Monitoring Programme. Progress on household drinking water, sanitation, and hygiene 2000-2017. Geneva, Switzerland; New York, NY: WHO; UNICEF, 2019, https://washdata.org
  150. Wu H., Tang B., Wu P. (2010a). MWNTs/Polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity, J. Phys. Chem. C, 114, pp. 16395–16400. DOI: 10.1021/jp107280m.
  151. Wu H., Tang B., Wu P. (2010b). Novel ultrafiltration membranes prepared from a multiwalled carbon nanotubes/polymer composite, J. Membr. Sci., 362, pp. 374–383. DOI: 10.1016/j.memsci.2010.06.064.
  152. www.fizyka.iss.com.pl/nanorurki/01nanorurki_.html (Accessed: 13.03.2021)
  153. Xiu Z.-M., Zhang Q.-B., Puppala H.L., Colvin V.L., Alvarez, P.J.J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12, pp. 4271–4275. DOI: 10.1021/nl301934w.
  154. Xue S.-M., Xu Z.-L, Tang Y.-J., Ji C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8, pp. 19135–19144. DOI: 10.1021/acsami.6b05545.
  155. Yan X.M., Shi B.Y., Lu J.J., Feng C.H., Wang D.S., Tang H.X. (2008). Adsorption and desorption of atrazine on carbon nanotubes, J. Colloi. Interf. Sci., 321 (1), pp. 30-38. DOI: 10.1016/j.jcis.2008.01.047.
  156. Yang H.Y., Han Z.J., Yu S.F., Pey K.L., Ostrikov K., Karnik R. (2013a). Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification, Nat. Commun., 4, pp. 2220. DOI: 10.1038/ncomms3220.
  157. Yang, X., Lee, J., Yuan, L., Chae, S.-R., Peterson, V.K., Minett, A.I., Yin, Y., Harris, A.T. (2013b). Removal of natural organic matter in water using functionalised carbon nanotube buckypaper, Carbon, 59, pp. 160–166. DOI: 10.1016/j.carbon.2013.03.005.
  158. Yin J., Deng B. (2015). Polymer-matrix nanocomposite membranes for water treatment, J.Membr. Sci., 479, pp. 256–275. DOI: 10.1016/j.memsci.2014.11.019.
  159. Zarrabi H., Ehsan M., Vatanpour V., Shockravi A., Safarpour M. (2016). Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination, 394, pp. 83–90. DOI: 10.1016/j.desal.2016.05.002.
  160. Zhang L., Chen H. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desalin. Water Treat., 34, pp. 19–24. DOI: 10.5004/dwt.2011.2801.
  161. Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B., Niu J., Qian X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448, pp. 81–92. DOI: 10.1016/j.memsci.2013.07.064.
  162. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. (2016). Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3-4, pp. 22–39. DOI: 10.1016/j.impact.2016.09.004.
  163. Zhao Y.L., Stoddart J.F. (2009). Noncovalent functionalization of single-walled carbon nanotubes, Acc. Chem. Res., 42, pp. 1161–1171. DOI: 10.1021/ar900056z.
  164. Zhao C., Xu X., Chen J., Yang F. (2013a). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes, J. Environ. Chem. Eng., 1, pp. 349–354. DOI: 10.1016/j.jece.2013.05.014.
  165. Zhao H., Wu L., Zhou Z., Zhang L., Chen H. (2013b). Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide, Phys. Chem. Chem. Phys., 15, pp. 9084–9092. DOI: 10.1039/c3cp50955a.
  166. Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450, pp. 249–256. DOI: 10.1016/j.memsci.2013.09.014.
  167. Zheng J., Li M., Yu K., Hu J., Zhang X., Wang L. (2017). Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Membr. Sci., 524, pp. 344–353. DOI: 10.1016/j.memsci.2016.11.032
Go to article

Authors and Affiliations

Michał Bodzek
1
ORCID: ORCID
Krystyna Konieczny
2
ORCID: ORCID
Anna Kwiecińska-Mydlak
3
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Sciences, Poland
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  3. Institute for Chemical Processing of Coal, Poland
Download PDF Download RIS Download Bibtex

Abstract

The biofiltration process in the biologically activated carbon filters (BAC) is one of advanced methods of water treatment. It enables efficient elimination of dissolved organic matter and some inorganic pollutants. The production of high-quality drinking water requires an appropriate method of filter work control based on biofilm growth assessment. The first aim of the study was to assess the microbial development in beds of two BAC filters with the use of various methods. The second aim was to compare the obtained results and indicate the method which could support filter operators during routine control of biofiltration process. The study was carried out in a pilot scale on models of BAC filters during two filter runs. The analysis of Microorganisms was performed in water samples collected from different depths of the filter beds with the use of culture method (HPC), metabolica ctivity assay (with the FDA), epifluorescence microscopy – total cell count method (TCC) and biochemical method (system Vitek 2 Compact). No statistical correlation between HPC and metabolic activity assay was noted. Total bacteria number determined with the use of TCC was approx. 100–900 times higher than in the HPC method. The biochemical tests revealed the presence of several Gram-negative species. The comparison of the applied methods shows that microbial activity assay is the most useful, fast and low-cost method which may be applied additionally to the HPC method at standard water treatment plant laboratory.
Go to article

Bibliography

  1. Adam, G. & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 7-8, pp. 943-951, DOI: 10.1016/S0038-0717(00)00244-3
  2. Battin, T.J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biomass. The Science of the Total Environment, 198, 1, pp. 51-60, DOI: 10.1016/S0048-9697(97)05441-7
  3. Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. (1999). LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods, 37, 1, pp.77-86, DOI: 10.1016/s0167-7012(99)00048-2
  4. Burtscher, M.M., Zibuschka, F., Mach1, R.L., Lindne, G. & Farnleitner, A.H. (2009). Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA, 35, 4, pp. 495-504, DOI: 10.4314/wsa.v35i4.76809
  5. Chaukura, N., Marais, S.S., Moyo, W., Mbali, N., Thakalekoala, L.C., Ingwani, T., Mamba, B.B., Jarvis, P. & Nkambule, T.T.I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review,  Journal of En-vironmental Chemical Engineering, 8, 2, 103659, DOI: 10.1016/j.jece.2020.103659
  6. Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. & Welch, R.P. (1984). Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology, 10, 2, pp.179-185, DOI: 10.1007/BF02011424.
  7. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
  8. Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E. & Biggs, C.A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Research 65, pp.134-156, DOI: 0.1016/j.watres.2014.07.008
  9. Elhadidy, A.M., Van Dyke, M.I., Chen, F., Peldszus, S. & Huck, P.M. (2017). Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters, Environ. Sci. Water Res. Technol., 3, pp. 249–261, DOI: 10.1039/C6EW00279J
  10. Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J. & Huang, C.-H. (2017). Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 123, pp. 224-235 DOI: 10.1016/j.watres.2017.06.073
  11. Garrity G.M. (ed.) (2005a) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part B The Gammaproteobacteria, Springer, New York.
  12. Garrity G.M. (ed.) (2005b) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C The Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York.
  13. Hasan, H.A., Muhammad, M.H. & Ismail, N.I. (2020), A review of biological drinking water treatment technologies for contaminants removal from polluted water resources, Journal of Water Process Engineering, 33, 101035, DOI: 10.1016/j.jwpe.2019.101035
  14. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Acceleration of carbon filters activation - experiments of pilot scale technological investigations. Water supply and water quality. PZITS, Poznań, pp. 683-703 (in Polish).
  15. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Effectiveness of organic compounds removing during water treatment by filtration through a biologically active carbon filter with the identification of microorganisms. Annual Set The Environment Protection, 18, 2, pp.235-246 (in Polish).
  16. Hopkins, Z.R., Sun, M., DeWitt, J.C. & Knappe, D.R.U. (2018). Recently Detected Drinking Water Contaminants: GenX and Other Per‐and Polyfluoroalkyl Ether Acids. Journal‐American Water Works Association, 110, 7, pp. 13-28, DOI: doi.org/10.1002/awwa.1073
  17. Kaarela, O. E., Harkki, H. A., Palmroth, M. R. T. & Tuhkanen T. A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, 5-8, pp. 681-692, DOI: 10.1080/09593330.2014.958542
  18. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A. & Tchórzewska-Cieślak B. (2017). The use of activated carbons for removing organic matter from groundwater, Archives of Environmental Protection, 43, 3, pp. 32-41, DOI:10.1515/aep-2017-0031
  19. Kijowska, E., Leszczyńska, M. & Sozański, M.M. (2001): Metabolic activity test in investigation of biodegradation in biological filters, Water, Science & Technology: Water Supply, 1, 2, pp.151-158, DOI: doi.org/10.2166/ws.2001.0032
  20. Kołaski, P., Wysocka, A., Pruss, A., Lasocka-Gomuła, I., Michałkiewicz, M. & Cybulski Z. (2019). Removal of Organic Matter from Water During Rapid Filtration through a Biologically Active Carbon Filter Beds – a Full Scale Technological Investigation, Annual Set The Environment Protection, 21, 2, pp. 1136-1155
  21. Kołwzan, B. (2011). Analysis of biofilms – their formation and functioning. Environmental Pollution Control, 33, 4, pp. 3-14 (in Polish)
  22. Komorowska-Kaufman, M., Ciesielczyk, F., Pruss, A. & Jesionowski T. (2018). Effect of sedimentation time on the granulometric composition of suspended solids in the backwash water from biological activated carbon filters. E3S Web of Conferences, 44, 00072. EDP Sciences, DOI: 10.1051/e3sconf/20184400072
  23. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138, DOI: 10.1016/j.chemosphere.2016.09.097
  24. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012) Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886, DOI: 10.1007/s12257-012-0127-x
  25. Lis, A., Pasoń, Ł. & Stępniak, L. (2016). Review of Methods Used to Indication of Biological Carbon Filters Activity. Engineering and Protection of Environment, 19, 3, pp. 413-425, DOI: 10.17512/ios.2016.3.11 (in Polish)
  26. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds. Water Supply and Wastewater Disposal, Politechnika Lubelska, 163-177.
  27. Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Review, 34, 4, pp. 415-425, DOI: 10.1111/j.1574-6976.2009.00200.x
  28. Olszewska, M. & Łaniewska-Trokenheim, Ł. (2013) Fluorescence-based methods of cell staining in physiological state studies of bacteria. Advancements of Microbiology, 52, 4, pp. 409-418 (in Polish).
  29. Papciak D., Kaleta J., Puszkarewicz A., Tchórzewska-Cieślak B. (2016). The use of biofiltration process to remove organic matter from groundwater. Journal of Ecological Engineering, 17, 3, pp. 119–124, DOI: 10.12911/22998993/63481
  30. Pincus, D. H. (2013). Microbial identification using the bioMérieux Vitek 2 system, Encyclo-pedia of Rapid Microbiological Methods, PDA-DHI, p.1-31. (https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf )
  31. Pruss, A. (2007): Contribution of Biofilm Thickness on Sand Filter Grains to Oxygen Uptake During Ammonia Nitrogen Removal. Environmental Pollution Control, 1, pp. 35-39 (in Polish).
  32. Pruss, A., Maciołek, A. & Lasocka-Gomuła I. (2009). Effect of the Biological Activity of Carbon Filter Beds on Organic Matter Removal from Water. Environmental Pollution Control, 31, pp. 31-34 (in Polish).
  33. Sadowska J. & Grajek W. (2009). Analysis of physiological state of single bacterial cell using fluorescent staining methods. Biotechnologia, 4, pp. 102-114 (in Polish).
  34. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M. & Morawski A. W. (2006). Biological activation of carbon filters. Water Research, 40, 2, pp.355-363, DOI: 10.1016/j.watres.2005.11.014
  35. Simpson D. R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, 12, pp. 2839-2848, DOI: 10.1016/j.watres.2008.02.025
  36. Smith, A.C. & Hussey M.A. (2016) Gram Stain Protocols, American Society for Microbiology, pp. 1-9.
  37. (https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf)
  38. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C. & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 1-3, pp. 156-181, DOI: 10.1016/j.desal.2005.12.052
  39. Standard Methods for the Examination of Water and Wastewater, 23’rd Edition, APHA, 2017 Washinghton
  40. Szeląg-Wasielewska, E., Joniak, T., Michałkiewicz, M., Dysarz, T. & Mądrecka, B. (2009) Bacterioplankton of the Warta River in relation to physicochemical parameters and flow rate. Ecohydrology & Hydrobiology, 9, 2-4, pp. 225-236. DOI: 10.2478/v10104-010-0008-x
  41. Szuster-Janiaczyk A. (2016). The Microbiological Evaluation of Deposits Come from Water Network on the Example of Selected Water Supply System. Annual Set The Environment Protection, 18, 2, pp. 815–827. (in Polish)
  42. van der Kooij, D. & van der Wielen, P.W.J.J. (2014). Microbial Growth in Drinking-Water Supplies. Problems, Causes, Control and Research Needs, IWA Publishing, UK
  43. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N. & Hammes F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113, pp. 191-206. DOI: 10.1016/j.watres.2017.01.065
  44. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. (1993). Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 59, 5, pp. 1520-1525, DOI: 10.1128/AEM.59.5.1520-1525.1993
  45. WHO (2003). Expert consensus. In: Bartram J., Cotruvo J.A., Exner M., Fricker C.R., Glasmacher A. (Eds.) Heterotrophic plate counts and drinking-water safety-the significance of HPCs for Water quality and human health. IWA Publishing on behalf of the World Health Organisation, London.
  46. Zamule, S.M., Dupre, C.E., Mendola, M.L., Widmer, J., Shebert, J.A., Roote, C.E. & Das P. (2021). Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicology and Environmental Safety 209, 111814; DOI: 10.1016/j.ecoenv.2020.111814
  47. Zhang, S., Gitungo, S.W., Axe, L., Raczko, R.F. & Dyksen, J.E. (2017). Biologically active filters – an advanced water treatment process for contaminants of emerging concern. Water Research, 114, pp. 31-41, DOI: 10.1016/j.watres.2017.02.014
  48. Ziglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P. & Villa, R. (2002). Assessment of activated sludge viability with flow cytometry. Water Research, 36, 2, pp. 460-468, DOI: 10.1016/s0043-1354(01)00228-7
Go to article

Authors and Affiliations

Dorota Holc
1
ORCID: ORCID
Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Elżbieta Szeląg-Wasielewska
2
Alina Pruss
1
ORCID: ORCID
Zefiryn Cybulski
3

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Poland
  3. Greater Poland Cancer Center, Microbiology Laboratory, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the time-delayed (after three years from the moment of soil pollution) effect of petroleum-derived products (PDPs) (petrol, diesel fuel and used engine oil) on the interaction between selected host plant (broad bean) and a herbivorous insect closely related to it (Sitona spp.). We assessed the condition of the plant exposed to pollutants (i.e. its growth and chemical composition), then we evaluated the attractiveness of the plant for both larvae and adults of the insect. The evaluation covered also the effect of bioremediation by using ZB-01 biopreparation. The results showed that after 3 years from soil contamination, engine oil and diesel fuel limited the feeding of adult sitona weevils while petrol caused increase in the attractiveness of plants for these insects. The PDPs negatively affected the growth of plants. The changes in element content depended on the type of pollutant. The biopreparation ZB-01 eliminated or reduced the differences caused by the presence of PDPs in the soil regarding the chemical composition of the host plant, and limited feeding by both the larvae and adult individuals of sitona weevils. The negative relationships between the contents of both some macroelements (Mg, S) and heavy metals (Zn, Ni), and feeding of imago of Sitona were observed. The obtained results indicate that PDPs remain for a long time in the environment and adversely affect not only the organisms directly exposed to the pollution – plants growing on polluted soil but also further links of the trophic chain, i.e. herbivores
Go to article

Bibliography

  1. Bose, J., Babourina, O. & Rengel. Z. (2010). Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany, 62, 7, pp. 2251–2264, DOI:10.1093/jxb/erq456.
  2. Buckhout, T.J. & Schmidt, W. (2010). Iron in Plants. Wiley Online Library 2010, DOI:10.1002/9780470015902.a0023713.
  3. Burghal, A.A., Al-Mudaffar, N.A. & Mahdi, K.H. (2015). Ex situ bioremediation of soil contaminated with crude oil by use of actinomycetes consortia for process bioaugmentation. European Journal of Experimental Biology, 5, pp. 24–30.
  4. Dorn, P.B. & Salanitro, J.P. (2000). Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere. 40, 4, pp. 419–426, DOI:10.1016/S0045-6535(99)00304-5.
  5. Gospodarek, J. & Nadgórska-Socha, A. (2016). Chemical composition of broad beans (Vicia faba L.) and development parameters of black bean aphid (Aphis fabae Scop.) under conditions of soil contamination with oil derivatives. Journal of Elementology, 21, 4, pp. 1359–1376, DOI:10.5601/jelem.2015.20.1.770.
  6. Gospodarek, J., Petryszak, P. & Kołoczek, H. (2016). The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna. Bioremediation Journal, 20, 1, pp. 38–53, DOI:10.1080/10889868.2015.1096899.
  7. Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G. & Pezzarossa, B. (2020). The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental Pollution, 265, A, 114950, DOI: 10.1016/j.envpol.2020.114950.
  8. Hanavan, R.P. & Bosque-Pérez, N.A. (2012). Effects of tillage practices on pea leaf weevil (Sitona lineatus L., Coleoptera: Curculionidae) biology and crop damage: A farm-scale study in the US Pacific Northwest. Bulletin of Entomological Research, 102, pp. 682–691, DOI:10.1017/S0007485312000272.
  9. Hepler, K.H. (2005). Calcium: a central regulator of plant growth and development. The Plant Cell, 17, 8, pp. 2142–2156, DOI:10.1105/tpc.105.032508.
  10. Himanen, S.J., Nissinen, A., Dong, W., Nerg, A., Stewart, C.N., Poppy, G.M. & Holoppainen, J.K. (2008). Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Global Change Biology,14, pp. 1437–1454, DOI:10.1111/j.1365-2486.2008.01574.x.
  11. Jamal, A., Moon, Y.S., Abdin, M.Z. (2010). Sulphur – a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4, 7, pp. 523–529.
  12. Jhee, E., Boyd, R. & Eubanks, M. (2006). Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense. Journal of Chemical Ecology, 32, 2, pp. 239–259, DOI:10.1007/s10886-005-9000-0.
  13. Jiang, D., Tan, M., Guo, Q. & Yan, S. (2021). Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Management Science, 77, 3, pp. 1115–1120, DOI: 10.1002/ps.6103.
  14. John, R.C., Akpan, M.M., Essien, J.P., & Ikpe, D. I. (2010). Impact of crude oil pollution on the densities of nitrifying and denitrifying bacteria in the rhizosphere of tropical legumes grown on wetland soil. Nigerian Journal of Microbiology, 24, 1, pp. 2088–2094.
  15. Kaszycki, P., Szumilas, P. & Kołoczek, H. (2001). Biopreparat przeznaczony do likwidacji środowiskowych skażeń węglowodorami i ich pochodnym. Inżynieria Ekologiczna, 4, pp. 15–22.
  16. Kaszycki, P., Pawlik, M., Petryszak, P. & Kołoczek, H. (2010). Aerobic process for in situ bioremediation of petroleum-derived contamination of soil: a field study based on laboratory microcosm tests. Ecological Chemistry and Engineering A, 17,4-5, pp. 405–414.
  17. Kaszycki, P., Pawlik, M., Petryszak, P. & Kołoczek, H. (2011). Ex situ bioremediation of soil polluted with oily waste: The use of specialized microbial consortia for process bioaugmentation. Ecological Chemistry and Engineering S, 18,1, pp. 83–92.
  18. Kaszycki, P., Petryszak, P. & Supel, P. (2015). Bioremediation of a spent metalworking fluid with auto- and allochthonous bacterial consortia. Ecological Chemistry and Engineering S, 22, 2, pp. 285–299.
  19. Lizbeth, P.A., Liliana, M.B., Luis, I.D.J. & Manuel, S.Y.J. (2020). Soil polluted by waste motor oil: remediation by biostimulation. Journal of the Selva Andina Research Society, 11, 2, pp. 84–93.
  20. Lou, Y. & Baldwin, I.T. (2004). Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuate. Plant Physiology, 135, 1, pp. 496–506. DOI:10.1104/pp.104.040360.
  21. Louati, H., Ben Said, O., Soltani, A., Cravo-Laureau, C., Duran, R., Aissa, P., Mahmoudi, E. & Pringault, O. (2015). Responses of a free-living benthic marine nematode community to bioremediation of a PAH mixture. Environmental Science and Pollution Research, 22, 20, pp. 15307–15318, DOI: 10.1007/s11356-014-3343-4.
  22. Lu, Z.X., Villareal, S., Yu, X.P., Heong, K.L. & Hu, C. (2005). Effects of nitrogen nutrient on the behavior of feeding and oviposition of the brown planthopper, Nilaparvata lugens on IR64. Journal of Agriculture & Life Sciences, 31, 1, pp. 62–70.
  23. Malallah, G., Afzal, M., Gulshan, S., Abraham, D., Kurian, M. & Dhami, M.S.I. (1996). Vicia faba as a bioindicator of oil pollution. Environmental Pollution, 92, 2, pp. 213–217, DOI: 10.1016/0269-7491(95)00085-2.
  24. Martin, C.W. & Swenson, E.M. (2018). Herbivory of oil-exposed submerged aquatic vegetation Ruppia maritima. Plos One 13. DOI: 10.1371/journal.pone.0208463.
  25. Mauricio-Gutierrez, A., Machorro-Velazquez, R., Jimenez-Salgado, T., Vazquez-Cruz, C., Patricia Sanchez-Alonso, M. & Tapia-Hernandez, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, 46, 4, pp. 59–69, DOI: 10.24425/aep.2020.135765.
  26. Odjegba, V.J. & Atebe, J.O. (2007). The effect of used engine oil on carbohydrate, mineral content and nitrate reductase activity of leafy vegetable (Amaranthus hybridus L.). Journal of Applied Sciences and Environmental Management, 11, 2, pp. 191–196, DOI: 10.4314/jasem.v11i2.55039
  27. Ogboghodo, I.A., Iruaga, E.K., Osemwota, I.O. & Chokor, J.U. (2004). An assesment of the effect of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types – Forcados Light and Escravos Light. Environmental Monitoring and Assessment 96, pp. 143–152, DOI:10.1023/B:EMAS.0000031723.62736.24.
  28. Pennings, S.C., McCall, B.D. & Hooper-Bui, L. (2014). Effects of oil spills on terrestrial arthropods in coastal wetlands. BioScience, 64, 9, pp. 789–795, DOI:10.1093/biosci/biu118.
  29. Petryszak, P., Kołoczek, H. & Kaszycki, P. (2008). Biological treatment of wastewaters generated by furniture industry. Part 1. Laboratory-scale process for biodegradation of recalcitrant xenobiotics. Ecological Chemistry and Engineering A, 15, 10, pp. 1129–1141.
  30. Rashid, M.M., Jahan, M. & Islam, K.S. (2016). Impact of nitrogen, phosphorus and potassium on Brown Plant hopper and tolerance of its host rice plants. Rice Science, 23, pp. 119–131, DOI:10.1016/j.rsci.2016.04.001
  31. Rosik-Dulewska, C., Ciesielczuk, T. & Krysinski, M. (2012). Organic pollutants in groundwater in the former airbase. Archives of Environmental Protection, 38, 1, pp. 27–34.
  32. Rusin, M., Gospodarek, J. & Nadgórska-Socha, A. (2015). The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish Journal of Environmental Studies, 24, 5, pp. 2157–2166, DOI:10.15244/pjoes/41378.
  33. Rusin, M., Gospodarek, J., Nadgórska-Socha, A. & Barczyk, G. (2017). Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean. Ecotoxicology, 26, pp. 308–319, DOI:10.1007/s10646-017-1764-9.
  34. Schratzberger, M., Daniel, F., Wall, C.M., Kilbride, R., Macnaughton, S.J., Boyd, S.E., Rees, H.L., Lee, K. & Swannell, R.P.J. (2003). Response of estuarine meio- and macrofauna to in situ bioremediation of oil—contaminated sediment. Marine Pollution Bulletin, 46, 4, pp. 430–443, DOI:10.1016/S0025-326X(02)00465-4.
  35. Sylvain, Z. A., Espeland, E. K., Rand, T. A., West, N. M. & Branson, D. H. (2019). Oilfield reclamation recovers productivity but not composition of arthropod herbivores and predators. Environmental Entomology, 48, pp. 299–308. DOI: 10.1093/ee/nvz012.
  36. Thomine, S. & Lanquar, V. (2011). Iron Transport and Signaling in Plants. Transporters and Pumps in Plant Signaling, 7, pp. 99–131, DOI:10.1007/978-3-642-14369-4_4.
  37. Tsutsumi, H., Hirota, Y. & Hirashima, A. (2000). Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. II. Toxicity of a bioremediation agent with microbiological cultures in aquatic organisms. Marine Pollution Bulletin, 40, 4, pp. 315–319, DOI:10.1016/S0025-326X(99)00219-2.
  38. Wu, B., Guo, S. H. & Wang, J. N. (2021). Spatial ecological risk assessment for contaminated soil in oiled fields. Journal of Hazardous Materials, 403, 123984, DOI: 10.1016/j.jhazmat.2020.123984.
  39. Wyszkowska, J., Kucharski, M. & Kucharska, J. (2006). Application of the activity of soil enzymes in the evaluation of soil contamination by diesel oil. Polish Journal of Environmental Studies, 15, 3, pp. 499–504.
  40. Wyszkowski, M. & Ziółkowska, A. (2009). Effect of compost, bentonite and calcium oxide on concent of some macroelrments in plants from soil contaminated by petrol and diesel oil. Journal of Elementology, 14, 2, pp. 405–418.
  41. Wyszkowski, M., Wyszkowska, J., Borowik, A. & Kordala, N. (2020). Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air and Soil Pollution 231, 12. DOI: 10.1007/s11270-020-04914-2.
  42. Zawierucha, I., Malina, G., Ciesielski, W. & Rychter, P. (2014). Effectiveness of intrinsic biodegradation enhancement in oil hydrocarbons contaminated soil. Archives of Environmental Protection, 40, 1, 101–113, DOI: 10.2478/aep-2014-0010.
Go to article

Authors and Affiliations

Milena Rusin
1
Janina Gospodarek
1
Aleksandra Nadgórska-Socha
2

  1. Department of Microbiology and Biomonitoring, University of Agriculture, Kraków, Poland
  2. Department of Ecology, University of Silesia in Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study describes the correlation between emission of gaseous pollutants to the atmosphere and the combustion parameters of a coal-fired 25 MW heating capacity water boiler with mechanical grate (boiler type WR-25) in unstable working conditions: start-up, shutdown and loads below the technical minimum. Whereas measurements were made for a specific type and size of coal-fired water boiler with mechanical grate, the measurements and calculations are applicable to WR boilers with a different heating power as well as OR type steam boilers, which have a practically identical design. In sum, there are more than 1,000 coal-fired water and steam boilers of these types in Poland. In addition, the analysis reported in this paper highlights the important role played by boilers operating in unstable conditions in terms of emission of gaseous pollutants to the atmosphere. The conclusions are relevant for other boilers fi red with gas, oil or biomass operating under conditions such as start-up, shutdown and loads below the technical minimum. This article fi lls a gap in air protection engineering practice and the literature with regard to indicators and emission standards, drawing on measurements of pollutant concentrations in the exhaust gases from unstable WR boiler working conditions. The measurements can be used to assess the emission of pollutants to the atmosphere in such boiler working conditions and their impact on air quality. The analyses presented were based on the authors’ own measurements in WR-25 boiler technical installations using portable gas analyser GASMET DX-4000, which uses the FT-IR measurement method for compounds such as SO2, NOx, HCl, HF, NH3, CH4, and CO. Concentrations of CO, NOx and SO2 in exhaust gases were determined with multiple regression with the STATISTICA statistical software and with linear regression complemented by the “smart” package in the MATLAB environment. The study provides computational models to identify pollutant concentrations in the exhaust gases in any working conditions of WR-25 boilers
Go to article

Bibliography

  1. Andersen, A. & Lund, H. (2007). New CHP partnerships offering balancing of fluctuating renewable electricity productions. Journal of Cleaner Production 15, pp. 288-293. DOI: 10.1016/j.jclepro.2005.08.017
  2. Kim, B.S., Kim, T.Y., Park, T.C. & Yeo, Y.K. (2018). Comparative study of estimation methods of NOx emission with selection of input parameters for a coal-fired boiler. Korean Journal of Chemical Engineering, 35(9), pp. 1779-1790. DOI: 10.1007/s11814-018-0087-8.
  3. Demirbas, A. (2006). Correlations between Carbon Dioxide Emissions and Carbon Contents of Fuels. Energy Sources Part B Economics Planning and Policy. 1(4), pp. 421-427. DOI: 10.1080/15567240500402628
  4. Directive (EU) 2015/1480 of 28 August 2015 amending several annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality
  5. Directive IED 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions - (integrated prevention of pollution and control)
  6. Directive 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants
  7. Environmental Protection Law Act of 27 April 2011 with further amendments.
  8. EuroHeat and Power. District Heating and Cooling – country profiles. 2019 https://www.euroheat.org/knowledge-hub/district-energy-poland/ (8.03.2021)
  9. Eurostat, 2019. Coal production and consumption statistics. Published June 2019, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Coal_production_and_consumption_statistics#Consumption_and_production_of_hard_coal (8.03.2021).
  10. Gustafsson, M.S., Myhren, J.A. & Dotzauer, E. (2018). Potential for district heating to lower peak electricity demand in a medium-size municipality in Sweden. J. Clean. Prod. 186, pp. 1–9. DOI: 10.1016/j.jclepro.2018.03.038
  11. Hast, A., Syri, S., Lekavicius, V. & Galinis, A. (2018). District heating in cities as a part of low-carbon energy system. Energy, 152, pp. 627–639. DOI: https://doi.org/10.1016/j.energy.2018.03.156
  12. Hunt, B.R., Lipsman, R.L. & Rosenberg, J.M. (2002). Guide to MATLAB: For Beginners and Experienced Users. Cambridge University Press. West Nyack, NY, USA. 04/2002.
  13. Holnicki, P., Kaluszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Archives of Environmental Protection. 43(1), pp. 48-64. DOI: 10.1515/aep-2017-0005
  14. Kruitwagen, L., Collins, S. & Caldecott, B. (2018). Coal-fired Power Stations. Coal in the 21st Century: Energy Needs, Chemicals and Environmental Controls. (45), pp.58-99, DOI: 10.1039/9781788010115-00058
  15. Kukuła, K. (1998). Elements of statistics in tasks. Scientific Publishers PWN Warsaw.
  16. Lin, B., & Lin, J. (2017). Evaluating energy conservation in China’s heating industry. J. Clean. Prod. 142, pp. 501–512. DOI: 10.1016/j.jclepro.2016.06.195
  17. Liu, J., Shi, J., Fu, Z., Zhang, J., Li, Y. & Ji, H. (2017). Optimization study on combustion in a 1000-MW ultra-supercritical double-tangential-circle boiler. Advanced in Mechanical Engineering, 9(11), pp. 1-12. DOI: 10.1177/1687814017730743
  18. Lund, R.L., Ilic, D.D. & Trygg, L. (2016). Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. J. Clean. Prod. 139, pp. 219–229. DOI: 10.1016/j.jclepro.2016.07.135.
  19. Ma, S. (2010). Simulation on SO2 and NOx Emission from Coal-Fired Power Plants in North-Eastern North America. Energy and Power Engineering, 2 (3), pp. 190-195. DOI: 10.4236/epe.2010.23028
  20. Marousek, J., Haskova, S., Zeman, R., Vachal, J. & Vanickova, R. (2014). Processing of residues from biogas plants for Energy purposes. Clean Technologies and Environmental Policy, 17, pp. 797–801. DOI: 10.1007/s10098-014-0866-9
  21. Maurice, B., Frischknecht, R., Coelho-Schwirtz, V. & Hungerbuhler, K. (2000). Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. Journal of Cleaner Production 8, pp. 95-108. DOI: 10.1016/S0959-6526(99)00324-8
  22. Mazhar, A. R., Liu, S. & Shukla, A.(2018). A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews, 96, pp. 420-439. DOI: 10.1016/j.rser.2018.08.005
  23. Miller, B.G. & Tillman, D.A. (2008). Combustion Engineering Issues for Solid Fuels Systems. Academic Press.
  24. Montanari, R. (2004). Environmental efficiency analysis for enel thermo-power plants. Journal of Cleaner Production, 12(4), PP.403-414. DOI: 10.1016/S0959-6526(03)00015-5
  25. PN-ISO 10396:2001 Stationary source emissions – sampling for the automated determination of gas concentrations. Polish Committee for Standardization.
  26. PN-EN 14181:2015-02 Stationary source emissions - Quality assurance of automatic measurement systems. Polish Committee for Standardization.
  27. Popiołkiewicz, R. (2006). The problem of efficiency of boilers operated in the summer. District Heating, Heating,Ventilation, 37,(5). (in Polish)
  28. Pronobis, M. (2002). Modernization of power boilers, Warsaw Scientific and Technical Publishers, Warsaw, (in Polish)
  29. Regulation of the Minister of the Climate of 24 September 2020 on emission standards for some types of installations, fuel combustion sources and waste incineration or co-incineration devices.
  30. Różycka-Wrońska, E., Wojdyga, K. & Chorzelski, M. (2014). Emission of pollutants in exhaust gases from Polish district heating sources. Journal of Cleaner Production, 75, pp. 157-165. DOI: 10.1016/j.jclepro.2014.03.069
  31. Różycka-Wrońska, E. (2016). Operational conditions for the emission of gaseous air pollutants from coal-fired heating sources, Dissertation, Printing House of Warsaw University of Technology Faculty of Building Services, Hydro and Environmental Engineering
  32. Statistics Poland 2020, GUS. Fuel and energy economy in 2018 and 2019. Published 27.11.2020, https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/gospodarka-paliwowo-energetyczna-w-latach-2018-i-2019,4,15.html (08.03.2021).
  33. Wang, N., Chen, X. & Wu, G. (2019). Public Private Partnerships, a Value for Money Solution for Clean Coal District Heating Operations. Sustainability, 11, 2386. DOI: 10.3390/su11082386
  34. Wilczyński, M. (2013). Twilight of hard coal in Poland, Foundation Institute for Sustainable Development, Warsaw, (in Polish).
  35. Wilk, Z. & Bocheńska, T. (2003). Hydrogeology of Polish mineral deposits and mining water problems. Volume II, AGH Publisher, Cracow, (in Polish).
  36. Wojdyga, K. (2014). Predicting heat demand for a district heating systems. International Journal of Energy and Power Engineering, 3(5), pp. 237-244. DOI: 10.11648/j.ijepe.20140305.13
  37. Yang, J. & Urpelainen, J. (2019). The future of India's coal-fired power generation capacity. Journal of Cleaner Production, 226, pp. 904-912. DPOI: 10.1016/j.jclepro.2019.04.074
  38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (2), pp. 58–67. DOI: 10.24425/aep.2020.133475
Go to article

Authors and Affiliations

Ryszard Zwierzchowski
ORCID: ORCID
Ewelina Różycka-Wrońska
1
ORCID: ORCID

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of energy and environmental evaluation of geothermal CHP plant. The variant of CHP plant based on Organic Rankine Cycle (ORC) has been taken into consideration as the most favorable for the geothermal conditions prevailing in Poland. The existing geothermal well located in the city of Konin in Greater Poland (Wielkopolska) voivodship has been chosen as the case study. The conceptual design of CHP plant has been proposed and evaluated from energy and environmental point of view. The non-renewable primary energy consumption has been chosen as energy performance criterion. In the case of environmental performance carbon dioxide emission has been taken as evaluation criterion. The analysis has been performed for different operating conditions and three working fluids. The best energy performance can be spotted for working fluid R123, for which the reduction varies between 15200 and 11900 MWh/a. The working fluid R134a has a worse energy performance, which allows for the reduction of fossil fuels energy consumption in the range of 15000 and 11700 MWh/a. The total reduction of CO2 emission is the highest for working fluid R123: 5300 to 4150 MgCO2/a, the medium one for working fluid R134a: 5200 to 4100 MgCO2/a and the lowest for working fluid R227: 5000 to 4050 MgCO2/a. It has been shown that the construction of geothermal CHP plants based on Organic Rankine Cycle can be reasonable solution in Polish conditions. It is important concerning the need of reduction of fossil fuels primary energy consumption and carbon dioxide emission.
Go to article

Bibliography

  1. Bao, J. & Zhao, L. (2013). A review of working fluid and expander selection for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, pp. 325-342.
  2. Barbacki, A. & Pająk, L. (2017). Assessment of Possibilities of Electricity Production in Flash Geothermal System in Poland. Geomatics and Environmental Engineering. 11 (3), pp.17-29.
  3. Borsukiewicz-Gozdur, A. & Nowak, W. (2007). Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy, 32 (4), pp. 344-352.
  4. Dai, X. , Shi, L. & Qian, W. (2019). Thermal stability of hexamethyldisiloxane (MM) as a working fluid for organic Rankine cycle. International Journal of Energy Research, 43 (2), pp. 896– 899.
  5. Energy from renewable sources 2017, Statistics Poland 2019, Warsaw 2019.
  6. Energy Reports. Statistics Poland 2019, Warsaw 2018.
  7. Górecki W. (red). (2006). Atlas of geothermal resources of Mesozoic formations in the Polish Lowlands. AGH University of Science and Technology S. Staszica in Cracow, Cracow.
  8. Grabowska, W. (2019). Utilization of geothermal energy in co-generated heat and power production, Eng. Thesis, Poznan University of Technology, Poznań (in Polish).
  9. Guo, T., Wang, H. & Zhang, S. (2011). Comparative analysis of natural and conventional working fluids for use in transcritical Rankine cycle using low-temperature geothermal source. International Journal of Energy Research, 35 (6), pp. 530-544.
  10. Heberle, F. & Bruggemann, D. (2010). Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation. Applied Thermal Engineering, 30 (11-12), pp. 1326-1332.www.geotermiakonin.pl/odwiert-geotermalny.html
  11. http://www.exergy-orc.com
  12. Jankowski, M., Borsukiewicz, A., Szopik-Depczyńska, K. & Ioppolo, G. (2019) Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach. Journal of Cleaner Production, 217, pp. 798-807.
  13. Kępińska, B. (2019). Geothermal Energy Use – country Update for Poland, 2016-2018; European Geothermal Congress 2019, Den Haag, The Netherlands, 11-14 June 2019.
  14. Legal Act of the Republic of Poland issued by Minister of Infrastructure and Development, on the methodology of evaluation of energy performance of buildings and building parts, Pos. 376/2015.
  15. Liu, L., Zhu, T., Wang, T. & Gao, N. (2019). Experimental investigation on the effect of working fluid charge in a small-scale Organic Rankine Cycle under off-design conditions. Energy, 174, pp. 664-677.
  16. Madhawa, H.D., Golubovic, M., Worek, W.M. & Ikegami, Y. (2007). Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources. Energy, 32 (9), pp. 1698-1706.
  17. Mahmoudi, A., Fazli, M. & Morad, M.R. (2018). A recent review of waste heat recovery by Organic Rankine Cycle. Applied Thermal Engineering. 143, pp. 660-675.
  18. Michałowski, M. (2011). Environmentally-friendly use of geothermal energy in Poland. Journal of the Polish Mineral Engineering Society, July-December 2011, pp. 1-9.
  19. Nowak, W. & Borsukiewicz-Gozdur, A. (2011). ORC power stations as the solution of low temperature heat source utilization. Clean Energy, 2, pp.32-35.
  20. Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P. & Lemort, V. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, pp. 168-186.
  21. Rettig, A., Lagler, M., Lamare, T., Li, S., Mahadea, V., McCallion, S. & Chernushevich, J. (2011). Application of Organic Rankine Cycles (ORC). World Engineers' Convention 2011, Geneva 4-9 September.
  22. Saleh, B., Koglbauer, G., Wendland M. & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles, Energy, 32, pp. 1210-1221.
  23. Sauret, E. & Rowlands, A. S. (2011). Candidate radial-inflow turbines and high-density working fluids for geothermal power systems. Energy, 36, pp. 4460– 4467.
  24. Wang, D., Ling, X., Peng, H., Liu, L. & Tao L. (2013). Efficiency and optimal performance evaluation of organic Rankine cycle for low grade west heat power generation., Energy, 50, pp. 342-355.
  25. Wang, S., Liu, C., Liu, L., Xu, X. & Zhang, C. (2019). Ecological cumulative exergy consumption analysis of organic Rankine cycle for waste heat power generation. Journal of Cleaner Production, 218, pp. 543-554.
  26. World Energy Outlook 2019, IEA Annual report, iea.org/countries.
  27. Zanellato, L., Astolfi, M., Serafino, A., Rizzi, D. & Macchi, E. (2017). Field performance evaluation of geothermal ORC power plants with a focus on radial outflow turbines. IV International Seminar on ORC Power Systems, ORC2017 13-15 September 2017, Milano, Italy, pp.1-8.
  28. Zhang, H., Guan, X., Ding, Y. & Liu, C. (2018). Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. Journal of Cleaner Production, 183, pp. 1207-1215
Go to article

Authors and Affiliations

Tomasz Maciej Mróz
1
ORCID: ORCID
Weronika Grabowska
1

  1. Poznań University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The prediction of PM2.5 is important for environmental forecasting and air pollution control. In this study, four machine learning methods, ground-based LiDAR data and meteorological data were used to predict the ground-level PM2.5 concentrations in Beijing. Among the four methods, the random forest (RF) method was the most effective in predicting ground-level PM2.5 concentrations. Compared with BP neural network, support vector machine (SVM), and various linear fitting methods, the accuracy of the RF method was superior by 10%. The method can describe the spatial and temporal variation in PM2.5 concentrations under different meteorological conditions, with low root mean square error (RMSE) and mean square deviation (MD), and the consistency index (IA) reached 99.69%. Under different weather conditions, the hourly variation in PM2.5 concentrations has a good descriptive ability. In this paper, we analyzed the weights of input variables in the RF method, constructed a pollution case to correspond to the relationship between input variables and PM2.5, and analyzed the sources of pollutants via HYSPLIT backward trajectory. This method can study the interaction between PM2.5 and air pollution variables, and provide new ideas for preventing and forecasting air pollution.
Go to article

Bibliography

  1. Belle, J. & Liu, Y. 2016).( Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality Research over the Continental United States. Remote Sensing, 8(10), pp. 815-820.
  2. Berdnik, V.V. & Loiko, V.A. (2016). Neural networks for aerosol particles characterization. Journal of Quantitative Spectroscopy & Radiative Transfer, 184.
  3. Bishop, C.M., (1995). Neural Networks for Pattern Recognition. Agricultural Engineering International the Cigr Journal of Scientific Research & Development Manuscript Pm, 12(5), pp. 1235 - 1242.
  4. Breiman & Leo, (1996). Bagging Predictors. Machine Learning, 24(2), pp. 123-140.
  5. Butt, E.W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., Regayre, L. A., Pringle, K. J., Mann, G. W. & Spracklen, D. V. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters. 10 (12). DOI: 10.1088/1748-9326/aa87be
  6. Chan, P.W. (2009). Comparison of aerosol optical depth (AOD) derived from ground-based LIDAR and MODIS. Open Atmospheric Science Journal, 3(1), pp. 131-137.
  7. Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., & Xiang, H. (2016). A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere, 7(10), p. 129. Doi: 10.3390/atmos7100129
  8. Fernald, F.G. (1984). Analysis of atmospheric lidar observations: some comments. Applied optics, 5, pp. 652-653.
  9. Gui, K., Che, H., Chen, Q., An, L., Zeng, Z., Guo, Z., Zheng, Y., Wang, H., Wang, Y., Yu, J., & Zhang, X. (2016)., Aerosol Optical Properties Based on Ground and Satellite Retrievals during a Serious Haze Episode in December 2015 over Beijing. Atmosphere, 7(5), pp. 70. DOI: 10.3390/atmos7050070
  10. Hu, S, Wang, Z., Xu, Q., Zhou, J. & Hu. H. (2006). Study on Lidar Measurement of Atmospheric Aerosol Optical Thickness. Journal of Quantum Electronics, 3, p. 307-310.(in Chinese)
  11. Hutchison, K.D., Faruqui, S.J. & Smi, S. (2008). The Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses. Atmosphere Environment, 3(42), pp. 530-554. DOI: 10.1016/j.atmosenv.2007.09.050
  12. Jones, R.M. (2008). Experimental evaluation of a Markov model of contaminant transport in indoor environments with application to tuberculosis transmission in commercial passenger aircraft. Dissertations & Theses - Gradworks, 2008.
  13. Kaufman, Y.J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), pp. 215-23.
  14. Li, X. & Zhang, X. (2019). Predicting ground-level PM 2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach. Environmental Pollution, 249, pp. 735-749. DOI: 10.1016/j.envpol.2019.03.068
  15. Bing,-C.L., Binaykia, A., Chang, P-C., Tiwari, M.K. & Tsao, C-C. (2017). Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. Plos One, 12(7), pp. e0179763. DOI: 10.1371/journal.pone.0179763
  16. Mao, X., Shen, T. & Feng, X. (2017). Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmospheric Pollution Research, 6(8), pp. 1005-1015. S1309104217300296.
  17. Nabavi, S.O., et al., Prediction of aerosol optical depth in West Asia using deterministic models and machine learning algorithms. Aeolian Research, 2018. 35C: p. 69-84.
  18. Stein, A.F., et al., NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 2016: p. 150504130527006. DOI: 10.1016/j.apr.2017.04.002
  19. Toth, T.D., Campbell, J.R., Reid, J.S., Tackett, J.L., Vaughan, M.A., Zhang, J. & Marquis, J.W. (2018). Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. Atmospheric Measurement Techniques, 11, p. 499-514. DOI: 10.5194/amt-11-499-2018
  20. Yan, D., Lei, Y., Shi, Y., Zhu, Q., Li, L.& Zhang, Z. (2018). Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a 2 case study from the Beijing-Tianjin-Hebei region. Atmosphere Environment. 183, pp. 225-233. DOI: 10.1016/j.atmosenv.2018.03.041
  21. Yang, G., Lee, H. & Lee, G. (2020). A Hybrid Deep Learning Model to Forecast Particulate Matter Concentration Levels in Seoul, South Korea. Atmosphere, 11(4): pp. 348. DOI: 10.3390/atmos11040348
  22. Wang, Y., Chen, L., Li, S., Wang, X., Yu, C., Si, Y. & Zhang, Z. (2017). Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD) Retrieval Algorithm. Remote Sensing, 2017. 9(4): p. 397. DOI: 10.3390/rs9040397
  23. Chen, Z., Zhang, J., Zhang, T., Liu, W. & Liu, J. (2015). Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014. Science China(Chemistry), 2015. 09(v.58): p. 33-40. DOI: 10.1007/s11426-015-5467-x
Go to article

Authors and Affiliations

Zhiyuan Fang
1 2 3
Hao Yang
1 2 3
Cheng Li
1 2 3
Liangliang Cheng
1 2 3
Ming Zhao
1 2
Chenbo Xie
1 2

  1. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Hefei 230031, China
  2. Science Island Branch of Graduate School, University of Science and Technology of China,Hefei 230026, China
  3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Chin
Download PDF Download RIS Download Bibtex

Abstract

The hedonic tone of an environmental odor is a powerful predictor of annoyance. Pertinent field surveys combined with laboratory analysis of landfill, pharmaceutical factories and rubber factories have been conducted, with the purpose of obtaining a behavior curve of the hedonic tone for specific odor emissions, and comparing the annoyance potential and odor persistence of the sources under investigation. The 9-point scale was used to determine the hedonic tone, and the odor concentration was measured using the Triangle Odor Bag Method. The concentration to be presented to panel members comprises a range of 5 or 6 dilution steps which differ by a factor of approximately 3. Using a suitable curve fitting procedure, a line can be fitted through the points obtained in the experiment. Characteristic H values at any concentration can be derived from the hedonic behavior curve. The relationship between the hedonic tone and lgOC conforms to the quadratic polynomial for the three sources. The persistence of odor is expressed as a dose (concentration) response and (intensity) function. According to the rate of change in odor intensity, the pharmaceutical odor is the strongest, followed by the landfill odor, and then the rubber odor. Annoyance potential is calculated by multiplying lgOC with the max hedonic value, meaning that the three sources are sorted as follows: rubber factory>landfill>pharmaceutical factory. This study will further the understanding of the sensory characteristics of different odor source
Go to article

Bibliography

  1. Chaignaud, M., Cariou, S., Poette, J., Fages, M. & Fanlo, J. L. (2014). A new method to evaluate odour annoyance potential. Chemical Engineering Transactions, 40, pp.13-18. DOI:10.3303/CET1440003
  2. Fournel, S., Pelletier, F., Godbout, S., Lagace, R. & Feddes, J.J.R. (2012). Odor emissions, hedonic tones and ammonia emissions from three cage layer housing systems, Biosystems Engineering,112,pp.181-191. DOI: 10.1016/j.biosystemseng.2012.03.010
  3. GB/T 14675(1993). Air Quality–Determination of Odor–Triangle Odor Bag Method, China Environmental Protection Agency Beijing, China. . (in Chinese)
  4. HJ 732(2014).Emission from stationary sources-Sampling of volatile organic compounds-Bags method, China Environmental Protection Agency Beijing, China. . (in Chinese)
  5. HJ 905(2017).Technical specification for environmental monitoring of odor, China Environmental Protection Agency Beijing, China. . (in Chinese)
  6. Idris, N. F., Kamarulzaman, N. H. & Nor, Z. M. O. H. D. (2017). Odor dispersion modelling for raw rubber processing factories. Journal of Rubber Research, 20,4,pp.223-241. DOI:10.1007/BF03449154
  7. Li, J., Li. W., Geng, J., et al. (2020). Prediction model and sensory evaluation of odor pollution in pig farms, Research of Environmental Sciences,32, 1, pp. 88-93. (in Chinese)
  8. Li, J., Zou, K., Li, W., Wang, G. & Yang, W. (2019). Olfactory characterization of typical odorous pollutants part i: relationship between the hedonic tone and odor concentration. Atmosphere, 10, 9,pp. 524-534. DOI: 10.3390/atmos10090524
  9. Li, W. , Li, J., Zhai, Z. , et al.(2018). Chinese population evaluation characteristics of the hedonic tone of two standard odorous substances,The Administration and Technique of Environmental Monitoring,30,1,PP,58-60. (in Chinese)
  10. Miedema, H. M. E., Walpot, J. I., Vos, H., & Steunenberg, C. F. (2000). Exposure-annoyance relationships for odor from industrial sources. Atmospheric Environment, 34,18,pp. 2927-2936. DOI: 0.1016/S1352-2310(99)00524-5
  11. Mueller, B. & Panaskova, J. (2015). Acceptability, perceived intensity, hedonic tone and pd-value - the relationship of these measurement categories. Gefahrstoffe Reinhaltung Der Luft. 75, 10, pp. 421-426. (in German)
  12. Nicell, J. A. (2009). Assessment and regulation of odour impacts. Atmospheric Environment, 43,pp.196-206. DOI: 10.1016/j.atmosenv.2008.09.033
  13. Nimmermark, S. (2011). Influence of odour concentration and individual odour thresholds on the hedonic tone of odour from animal production. Biosystems Engineering, 108, pp. 211-219. DOI:10.1016/j.biosystemseng.2010.12.003
  14. Schauberger, G. & Piringer, M. (2015). Odor impact criteria to avoid annoyance. Austrian Contribution to Vetennary Epodemiology, 8,pp.35-42.
  15. Sucker, K., Both, R., Bischoff, M., Guski, R., Krämer, U. & Winneke, G. (2008). Odor frequency and odor annoyance part ii: dose-response associations and their modification by hedonic tone. International Archives of Occupational & Environmental Health, 81, 6, pp. 683-694.
  16. VDI 3882-2(1997). Olfactometry – Determination of hedonic odor tone, Germany. Verlag des Vereins Deutscher Ingenieure, (1997)
  17. Wang, D., Zhu, X., YANG, X., et al. (2019). Advances and Perspectives in Pollution Characteristics and Prevention and Control Technology of VOCs and Odor Emitted from Pharmaceutical Fermentation Industry, Environmental science,4,pp.1-12. (in Chinese)
  18. Wang, Q., Zuo, X., Xia, M., Xie, H. & Zhu, L. (2019). Field investigation of temporal variation of volatile organic compounds at a landfill in Hangzhou, China. Environmental science and Pollution Research,26,18. DOI: 10.1007/s11356-019-04917-5
  19. Winneke, G. & Kastka, J. (1987). Comparison of odor-annoyance data from different industrial sources: problems and implications. Developments in Toxicology & Environmental ence, 15,3,pp. 129-137.
  20. Yan, F., Li, W., Wang, G., Li, J. & Zhai, Z. (2019). Study on pollution characteristics and sensory of NH3 in industrial site of Tianjin city, Environmental Chemistry,38,11, pp.2505-2509. DOUI: 10.7524/j.issn.0254-6108.2019031401 (in Chinese)
  21. Yan, F., Li.W. F., Han, M., et al. (2018). Sensory characteristics and specific pollutants for typical odor emission sources in China, Research of Environmental Sciences, 31, 9, pp. 1645-1650. (in Chinese)
  22. Yang, W., Zou, K., Li, W., et al. (2018). Odor concentration prediction method and hedonic tone evaluation for sewage treatment plant, Environmental Pollution & Control,40,11,pp. 1306-1309. (in Chinese)
Go to article

Authors and Affiliations

Fengyue Yan
1 2 3
Weifang Li
1 2
Gen Wang
1 2
Jing Geng
1 2
Zhiqiang Lu
1 2
Zengxiu Zhai
1 2 3
Yan Zhang
1 2 3

  1. State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
  2. Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
  3. Tianjin Sinodour Environmental Protection Science and Technology Development Co., Ltd.,Tianjin 300191, China
Download PDF Download RIS Download Bibtex

Abstract

A drachm of Trajan struck in 98 AD in the mint in Lycia was uncovered at a settlement of the Przeworsk culture at Łęki Majątek (Kutno district). The coin was found in a pit house dated at the beginning of phase C2 of the Late Roman Period (c. 260--c. 280 AD). A good state of preservation of the coin indicates that most of the time it remained hidden in a hoard.
Go to article

Authors and Affiliations

Mateusz Bogucki
Beata Jurkiewicz
Henryk Machajewski
Download PDF Download RIS Download Bibtex

Abstract

Common counterfeits of small copper shillings of King John Casimir, originally coined between the years 1659 and 1666, were researched reluctantly. The 17'hcentury hoard from Idźki-Wykno (Wysokie Mazowieckie County, Podlaskie Voivodeship), uncovered in 1969 gave us a new opportunity to take up this issue, thanks to its large representation of counterfeits.
Go to article

Authors and Affiliations

Grzegorz Śnieżko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Three coins were found during a small archaeological excavation at the medieval castle in the Lower Silesian village of Stare Kolnie (Popielów Commune, Opole County, Opolskie Voivodeship): a Silesian kwartnik from the beginning of the 14th century, a Wrocław heller from the years 1417-20 and a counterfeit Polish half-groschen struck after 1410. The kwartnik belongs to the oldest artifacts found at the castle, whereas the fifteenth-century coins were found in the layer related to the final demolition of the castle during the fighing in 1443.
Go to article

Authors and Affiliations

Marek Lech
Borys Paszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

In 2011 twelve early medieval coins found their way to the collection of the Coins, Medals and Seals Department of the Ossolineum, including nine cross pennies of the types VII (Crosier) and VIII (Hand-head), a penny of Boleslaus the Bold of the 'royal' type, and two specimens with the names of Boleslaus and St John, extremely rare and interesting, attributed to the Wrocław mint. Part of these: the two pennies with St John's name and cross pennies of type VII, may derive from a scattered hoard from the village of Kopacz, Złotoryja County, Dolnośląskie Voivodeship.
Go to article

Authors and Affiliations

Barbara Butent-Stefaniak
Download PDF Download RIS Download Bibtex

Abstract

The subject of this study is a stater found in Masłów (Lower Silesia) in 1704: the oldest documented find of a Celtic coin from the area of the present-day Poland. The coin, which has been regarded as missing until recently, was successfully identified with a high degree oflikelihood in the collection of the Staatliche Museen in Berlin. The present study has carried out an analysis of the unit and the records concerning it, particularly emphasising the issues related to iconography, examined against a broad comparative background. The summary includes conclusions concerning the place of striking and dating of this unique coin.
Go to article

Authors and Affiliations

Marcin Rudnicki

This page uses 'cookies'. Learn more