Details

Title

Experimental study of a two-phase ejector for CO2 transcritical refrigeration system

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 4

Affiliation

Haberschill, Philippe : University of Lyon, CNRS, INSA-Lyon, CETHIL UMR5008, F-69621, Villeurbanne, France ; Nehdi, Ezzeddine : Research Lab Energetic and Environment, National Engineering School of Tunis, Tunis El Manar University, Tunisia ; Kairouani, Lakdar : Research Lab Energetic and Environment, National Engineering School of Tunis, Tunis El Manar University, Tunisia ; Elakhdar, Mouna Abouda : Research Lab Energetic and Environment, National Engineering School of Tunis, Tunis El Manar University, Tunisia

Authors

Keywords

CO2 ; Ejector ; Transcritical cycle

Divisions of PAS

Nauki Techniczne

Coverage

217-246

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Elbel S., Hrnjak P.: Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 31(2008), 3, 411–422.
[2] Liu J.P., Chen J.P., Chen Z.J.: Thermodynamic analysis on transcritical R744 vapor compression/ejection hybrid refrigeration cycle. In: Prelim. Proc. 5th IIR Gustav Lorentzen Conf. on Natural Working Fluids, Guangzhou 2002, 184–188.
[3] Jeong J., Saito K., Kawai S., Yoshikawa C., Hattori K.: Efficiency enhancement of vapor compression refrigerator using natural working fluids with two-phase flow ejector. In: Proc. 6th IIR-Gustav Lorentzen Conf. on Natural Working Fluids at Glasgow 2004, CD-ROM.
[4] Jian-qiang Deng, Pei-xue Jiang, Tao Lu, Wei Lu: Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 27(2007), 381–388.
[5] Da Qing Li, Groll E.A.: Transcritical CO2 refrigeration cycle with ejectorexpansion device. Int. J. Refrig. 28(2005), 5, 766–773.
[6] Ksayer E.B., Clodic D.: Enhancement of CO2 refrigeration cycle using an ejector: 1D analysis. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue 2026, Purdue Univ. R058.2006.
[7] Bartosiewicz Y., Aidoun Z., Mercadier Y.: Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl. Therm. Eng. 26(2006), 5-6, 604–612.
[8] Petrenko V.O., Huang B.J., Ierin V.O.: Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle. Int. J. Refrig. 34(2011), 7, 1649–1656.
[9] Martel S.: Étude numérique d’un écoulement diphasique critique dans un convergent- divergent. PhD thesis, Université de Sherbrooke, Sherbrooke 2013 (in French).
[10] Marynowski T.: Étude expérimentale et numérique d’écoulements supersoniques en éjecteur avec et sans condensation. PhD thesis, Université de Sherbrooke, Sherbrooke 2007 (in French).
[11] Scott D., Aidoun Z., Ouzzane M.: An experimental investigation of an ejector for validating numerical simulations. Int. J. Refrig. 34(2011), 7, 1717–1723.
[12] Chen H., Zhu J., Ge J., Lu W., Zheng L.: A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position. Energy 208(2020), 118302.
[13] Mondal S., De D.: Performance assessment of a low-grade heat driven dual ejector vapor compression refrigeration cycle. Appl. Therm. Eng. 179(2020), 115782.
[14] Ringstad K.E., Allouche Y., Gullo P., Banasiak K., Hafner A.: A detailed review on CO2 two-phase ejector flow modeling. Thermal Sci. Eng. Progress 20(2020), 100647.
[15] Yu B., Yang J., Wang D., Shi J., Chen J.: An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle. Energy 189(2019), 116147.
[16] Chen W., Liu M., Chong D., Yan J., Little A.B., Bartosiewicz Y.A.: 1D model to predict ejector performance at critical and sub-critical operational regimes. Int. J. Refrig. 36(2013), 6, 1750–1761.
[17] Banasiak K., Hafner A., Andresen T.: Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. Int. J. Refrig. 35(2012), 6, 1617–1625.
[18] Domanski P.A.: Theoretical Evaluation of the Vapor Compression Cycle With a Liquid-Line/Suction-Line Heat Exchanger, Economizer, and Ejector. National Institute of Standards and Technology, NISTIR-5606, 1995.
[19] Elbel S.W., Hrnjak P.S.: Effect of internal heat exchanger on performance of transcritical CO2 systems with ejector. In: Proc. 10th Int. Refrigeration and Air Conditioning Conf. Purdue 2004, R166, West Lafayette 2004.
[20] Kornhauser A.A.: The use of an ejector as a refrigerant expander. In: Proc. USNC/IIR-Purdue Refrigeration Conf., Purdue Univ.,West Lafayette 1990, 10–19.
[21] Lawrence N., Elbel S.: Experimental and analytical investigation of automotive ejector air-conditioning cycles using low-pressure refrigerants. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue, July 16-19, 2012, 1169, 1–10.
[22] Liu F., Li Y., Groll E.A.: Performance enhancement of CO2 air conditioner with a controllable ejector. Int. J. Refrig. 35(2012), 6, 1604–1616.
[23] Domanski P.A.: Minimizing throttling losses in the refrigeration cycle. In: Proc. 19th Int. Congress of Refrigeration, Hague 1995, 766–773.
[24] Varga S., Oliveira A., Diaconu B.: Influence of geometrical factors on steam ejector performance – A numerical assessment. Int. J. Refrig. 32(2009), 7, 1694– 1701.
[25] Sarkar J.: Optimization of ejector-expansion transcritical CO2 heat pump cycle. Energy 33(2008), 9, 1399–1406.
[26] Elbel S.: Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. Int. J. Refrig. 34(2011), 7, 1545–1561.
[27] Lee J.S., Kim M.S., Kim M.S.: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[28] Lucas C., Koehler J.: Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. Int. J. Refrig. 35(2012), 6, 1595–1603.
[29] Nakagawa M., Marasigan A.R., Matsukawa T., Kurashina A.: Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigerationcycle with and without heat exchanger. Int. J. Refrig. 34(2011), 7, 1604–1613.
[30] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with twophase ejector. Int. J. Refrig. 34(2011), 7, 1577–1586.
[31] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis of two phase ejector system with varying mixing cross-sectional area using natural refrigerant CO2. Int. J. Air-Cond. Refrig. 18(2010), 4, 297–307.
[32] Liu F., Groll E.A., Li D.: Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles. Energy 45(2012), 1, 829–839.
[33] Liu F., Groll E.A.: Analysis of a two-phase flow ejector for transcritical CO2 cycle. Int. Refrig. Air Cond. Conf., Purdue, July 14–17, 2008, 924.
[34] Liu F., Groll E.A.: Study of ejector efficiencies in refrigeration cycles. Appl. Therm. Eng. 52(2013), 2, 360–370.
[35] Lawrence N., Elbel S.: Experimental investigation on the effect of evaporator design and application of work recovery on the performance of two-phase ejector liquid recirculation cycles with R410A. Appl. Therm. Eng. 100(2016), 398–411.
[36] Van Nguyen V., Varga S., Soares J., Dvorak V., Oliveira A.C.: Applying a variable geometry ejector in a solar ejector refrigeration system. Int. J. Refrig. 113(2020), 187–195.
[37] Pereira P.R., Varga S., Soares J., Oliveira A.C., Lopes A.M., de Almeida F.G., Carneiro J.F.: Experimental results with a variable geometry ejector using R600a as working fluid. Int. J. Refrig. 46(2014), 77–85.
[38] Liu F., Groll E.: A preliminary study of the performance enhancement of a dualmode heat pump using an ejector. In: Proc. 25th IIR Int. Cong. of Refrigeration, ICR2015, Yokohama, Aug. 16-22, 2015, 16–22.
[39] Eames I.W., Wu S., Worall M., Aphornratana S.: An experimental investigation of steam ejectors for application in jet-pump refrigerators powered by low-grade heat. P. I. Mech. Eng. A-J Pow. A 213(1999), 5, 351–361. [40] Lee J.S., Kim M. Se, Kim M. Soo: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[41] Bouzrara A.: Etude expérimentale des éjecteurs- application à la récupération de l’énergie de détente des machines frigorifiques au CO2. PhD thesis, INSA Lyon (CETHIL)-ENI Tunis 2018 (in French).

Date

2022.01.17

Type

Article

Identifier

DOI: 10.24425/ather.2021.139660

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×