Details

Title

Numerical analysis of storey-to-storey fire spreading

Journal title

Archives of Civil Engineering

Yearbook

2022

Volume

vol. 68

Issue

No 1

Affiliation

Schabowicz, Krzysztof : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland ; Sulik, Paweł : Instytut Techniki Budowlanej, Filtrowa 1, 00-611 Warsaw, Poland ; Gorzelańczyk, Tomasz : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland ; Zawiślak, Łukasz : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland

Authors

Keywords

fire ; the leap-frog effect ; façades ; fire safety ; large scale facade test ; storey-to-storey fire spreading

Divisions of PAS

Nauki Techniczne

Coverage

91-109

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography

[1] EN 13501-1:2019-02. Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests.
[2] M. Bonner, G. Rein, “Flammability and multi-objective performance of building: towards optimum design”, International Journal of High-Rise Buildings, 2018, vol. 7, pp. 363–374, DOI: 10.21022/IJHRB.2018.7.4.363.
[3] K. Livkiss, S. Svensson, “Flame Heights and Heat Transfer in Façade System Ventilation Cavities”, Fire Technology, 2018, no 54, pp. 689–713, DOI: 10.1007/s10694-018-0706-2.
[4] D.I. Kolaitis, E.K. Asimakopoulou, M.A. Founti, “A Full-scale fore test to investigate the fire behaviour of the “ventilated facade” system”, in Interflam 2016, Windsor, 2016.
[5] S. Colwell, T. Baker, Fire Performance of external thermal insulation for walls of multistorey buildings, 3rd ed., Garston: IHS BRE Press, 2013.
[6] S. Boström, D. McNamee, “Fire test of ventilated and unventilated wooden facades”, SP Report 2016:16, Boras, 2016.
[7] J. Anderson, R. Jensson, “Experimental and numerical investigation of fire”, in Fire Computer Modeling Santander, 18-19th October 2012, Spain, 2012.
[8] J. Andersson, L. Boström, R. Jansson McNamee, “Fire Safety of Facades”, RISE Research Institutes of Sweden, SP Rapport 2017:37, Brandforsk 2017:3.
[9] R. Rogan, E. Shipper, ASTM Leap Frog Effect. The design and analysis of a computer fire model to test for flame spread through a building’s exterior, 2010.
[10] BS 8414-1:2015¸A1:2017 Fire performance of external cladding systems. Test method for non-loadbearing external cladding systems applied to the masonry face of a building, Building Research Establishment.
[11] PN-90/B-02867:1990¸Az1:2001 Fire protection of buildings. The method of testing the degree of fire spread through walls (in Polish).
[12] EOTA No 761/PP/GRO/IMA/19/1133/11140, European Commision, 2019.
[13] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test.
[14] M. Smolka, E. Anselmi, T. Crimi, B. Le Madec, I.F. Moder, K.W. Park, R. Rupp, Y.-H. Yoo, H. Yoshioka, “Semi-natural test methods to evaluate fire safety ofwall claddings:Update”, inMATECWeb of Conferences, 2016, vol. 46, DOI: 10.1051/matecconf/20164601003.
[15] D. Chen, S.M. Lo,W. Lu, K.K. Yuen, Z. Fang, “A numerical study of the effect of window configuration on the external heat and smoke spread in building fire”, Numerical Heat Transfer, 2001, no. 40, pp. 821–839, DOI: 10.1080/104077801753344286.
[16] M. Ibrahim, A.M. Sharaf Eldin, M. Ayoub, “Effect ofWindow Configurations on Fire Spread in Buildings”, in 11th International Energy Conversion Engineering Conference, 2013, DOI: 10.2514/6.2013-3947.
[17] I. Oleszkiewicz, “Heat transfer from a window fire plume to a building facade”, ASME HTD, 1989, vol. 123, pp. 163–170, DOI: 10.4224/40001813.
[18] I. Korrhoff, “ETICS and fire safety Basic principles and framework conditions”, in Third ETICS Forum, Milan, 2015.
[19] J. Anderson, L. Boström, R. Jansson McNamee, B. Milovanovic, “Modeling of fire exposure in facade fire testing”, Fire and Materials, 2018, vol. 42, pp. 475–483, DOI: 10.1002/fam.2485.
[20] SP FIRE 105. Method for fire testing of façade materials, Department of Fire Technology, Swedish National Testing and Research Institute, 1994.
[21] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test, International Organization for Standardization.
[22] W.K. Chow, W.Y. Hung, Y. Gao, G. Zou, H. Dong, “Experimental study on smoke movement leading to glass damages in double-skinned facade”, Construction and Building Materials, 2007, vol. 21, no. 3, pp. 556–566, DOI: 10.1016/j.conbuildmat.2005.09.005.
[23] Z. Ni, S. Lu, L. Peng, “Experimental study on fire performance of double-skin glass facades”, Journal of Fire Sciences, 2012, vol. 30, no. 5, pp. 457–472, DOI: 10.1177/0734904112447179.
[24] I. Kotthoff, “Mechanismen der Brandausbreitung an der Gebäudeaußenwand, Brandverhalten von WDVS unter besonderer Berücksichtigung von Polystyrol-Hartschaum”, in 9. Hessischer Energieberatertag, Frankfurt, 2012.
[25] F. Incropera, D. DeWitt, T. Bergman, A. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, 2007.
[26] M. Hurley, SFPE Handbook of Fire Protection Engineering, 5th ed., vol. 1, Springer New York, 2016.
[27] J. Degler, A. Ellasson, J. Anderson, D. Lange, “A-priopri modelling of the tisova fire test as input to the experimentalwork”, in The First International Conference on Structural Safety under Fire&Blast, Glasgow, 2015.
[28] K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella, Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation, NIST Special Publication 1018-3, 6th ed., National Institute of Standards and Technology and VTT Technical Research Centre of Finland, 2019.
[29] C.H. Lin, Y. M. Ferng, W.S. Hsu, “Investigating the effect of computational grid sizes on the predicted characteristics of thermal radiation for a fire”, Applied Thermal Engineering, 2009, vol. 29, pp. 2243–2250, DOI: 10.1016/j.applthermaleng.2008.11.010.
[30] P. Sulik, J. Kinowski, “Operational safety of façades" (in Polish), Materiały Budowlane, 2014, no. 9, pp. 38–39.
[31] B. Sedłak, J. Kinowski, P. Sulik, G. Kimbar, “The risks associated with falling parts of glazed façades”, Open Engineering, 2018, vol. 8, pp. 147–155, DOI: 10.1515/eng-2018-0011.
[32] J. Kinowski, B. Sedłak, P. Roszkowski P. Sulik, “The effect of the way of fixing exterior wall cladding on its behaviour in fire conditions” (in Polish), Materiały Budowlane, 2018, no. 8, pp. 204–205.

Date

2022.03.30

Type

Article

Identifier

DOI: 10.24425/ace.2022.140158
×