Details

Title

Determination of vertical displacements by using the hydrostatic levelling systems with the variable location of the reference sensor

Journal title

Archives of Civil Engineering

Yearbook

2022

Volume

vol. 68

Issue

No 1

Affiliation

Kamiński, Waldemar : Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

Authors

Keywords

vertical displacement ; hydrostatic levelling systems ; reference sensor ; controlled sensors

Divisions of PAS

Nauki Techniczne

Coverage

189-206

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography

[1] P. Bestmann, C. Barreto, C. Charrondiere, “Hydrostatic Levelling System Going Mobile”, in Proceedings 14 the International Workshop on Accelerator Alignment, 3–7 Oct 2016, Grenoble, France. 2016, pp. 1–6. [Online]. Available: https://inspirehep.net/literature/1722424. [Accessed: 2.02.2021].
[2] O. Burdet, “Experience in the Long-Term Monitoring of Bridges”, in 3rd fib International Congress (No.EPFLCONF163103). Washington DC, USA, 2010, pp. 108–113. [Online]. Available: https://infoscience.epfl.ch/record/163103. [Accessed: 2.02.2021].
[3] D. Filipiak–Kowszyk, W. Kaminski, “Determination of vertical displacements in relative monitoring networks”, Archives of Civil Engineering, 2020, vol. 66, no. 1, pp. 309–326, DOI: 10.24425/ace.2020.131790.
[4] H. Friedsam, J. Penicka, J. Error, “Deformation measurements at the vehicle tunnel overpass using a hydrostatic level system”, International Nuclear Information System, Report Number LS-255(ANL), University of North Texas Libraries, UNT Digital Library, 1996, pp. 1–14, DOI: 10.2172/399677.
[5] W. Habel, H.Kohlhoff, J. Knapp, R. Helmerich, “Monitoring System for Long-termevaluation of prestressed railway bridges in the new Lehrter Bahnhof in Berlin”, in Third World Conference on Strucutral Control, 7-12.4.2002, Como, Italy, 2002, pp. 1–6.
[6] W. Kaminski, “The Idea of Monitoring Surface Deformations on Unstable Ground with the Use of GPS Technology”, Bolletino di Geodesia e Scienze Affini, 2008, vol. 1, pp. 33–45.
[7] W. Kaminski, “The Conception of Monitoring the Superficial Deformation Located on theUnstable Foundation with the Usage of GPS Technology”, presented at 13th FIG International Symposium on Deformation Measurements and Analysis, 4th Symposium on Geodesy for Geotechnical and Structural Engineering, Lisbon, May 12–15, 2008.
[8] W. Kaminski, “Properties and analysis of the accuracy of estimation results obtained by the DiSTFA method in monitoring displacements and strains”, Geodesy and Cartography, 2009, vol. 58, no. 2, pp. 37–50.
[9] W. Kaminski, K. Makowska, “The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling”, Geosciences, 2019, vol. 9, no. 10, pp. 1–12, DOI: 10.3390/geosciences9100406.
[10] D. Martin, “Deformation movements observed at the European Synchrotron Radiation Facility”, in Proceedings of The 22nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators, SLAC, Stanford University USA, 2000, pp. 341–357. [Online]. Available: https://www-project. slac.stanford.edu/lc/wkshp/gm2000/proceedings/article25.pdf. [Accessed: 2.02.2021].
[11] E. Meier, A. Geiger, H. Ingensand, H. Licht, P. Limpach, A. Steiger, R. Zwyssig, “Hydrostatic levelling systems: Measuring at the system limits”, Journal of Applied Geodesy, 2010, vol, 4, no. 2, pp. 91–102, DOI: 10.1515/jag.2010.009.
[12] L. Schueremans, K. Van Balen, P. Smars, V. Peeters, D. Van Gemert, “Hydrostatic Levelling System – monitoring of historical structures”, in Structural Analysis of Historical Constructions, P.B. Lourenço, et al., Ed., New Delhi, 2006, pp. 529–536.
[13] L. Schueremans, K. Van Balen, K. Brosens, D. Van Gemert, P. Smars, “Church of Saint-James at Leuven – structural assessment and consolidation measures”, International Journal of Architectural Heritage, 2007, vol. 1, pp. 82–107, DOI: 10.1080/15583050601126137.
[14] B. Szabo, J. Brzeski, J.M. González, “Use of linked monitoring systems for asset protection at finsbury circus during scl tunnelling for crossrail station”, Crossrail Learning Legacy, 2015. [Online]. Available: https://learninglegacy.crossrail.co.uk/documents/use-linked-monitoring-systems-asset-protection-finsbury-circus-scl-tunnelling-crossrail-station-2/. [Accessed: 2.02.2021].
[15] K. Wilde, M. Meronk, M. Groth, M. Miskiewicz, “Structure monitoring by means of hydrostatic levelling” (in Polish), in 27th Scientific Technical Conference on Building failures, 2015, pp. 278–284.
[16] Z.Wisniewski, “The idea of determination of parameters of location and shape of fundamental plates on the basis of free leveling”, in Materials from VI Scientific-Technical Session Current Scientific and Technical Problems of Geodetic Works, Gdansk –Sobieszewo, 6–7 October 1989 (in Polish). Gdansk, 1989.
[17] V.V. Yepin, R.V. Tsvetkov, I.N. Shardakov, A.P. Shestakov, “Estimation of hydrostatic level parameters for measuring vertical displacement fields of structures on a test stand”, AIP Conference Proceedings, 2018, vol. 2053, pp. 1–6, DOI: 10.1063/1.5084542.
[18] X. Zhang, Y. Zhang, L. Zhang, G. Qiu, D. Wei, “Power Transmission Tower Monitoring with Hydrostatic Leveling System: Measurement Refinement and Performance Evaluation”, Hindawi. Journal of Sensors, 2018, article ID 4176314, pp. 1–12, DOI: 10.1155/2018/4176314.

Date

2022.03.30

Type

Article

Identifier

DOI: 10.24425/ace.2022.140163
×