Details

Title

Impact of tractor wheels on physical properties of different soil types and the irrigation efficiency of the furrow irrigation method

Journal title

Journal of Water and Land Development

Yearbook

2022

Issue

No 52

Affiliation

Vistro, Rahim Bux : Sindh Agriculture University, Faculty of Agricultural Engineering, Tandojam, Hyderabad, 70060, Sindh, Pakistan ; Talpur, Mashooque Ali : Sindh Agriculture University, Faculty of Agricultural Engineering, Tandojam, Hyderabad, 70060, Sindh, Pakistan ; Shaikh, Irfan Ahmed : Sindh Agriculture University, Faculty of Agricultural Engineering, Tandojam, Hyderabad, 70060, Sindh, Pakistan ; Mangrio, Munir Ahmed : Sindh Agriculture University, Faculty of Agricultural Engineering, Tandojam, Hyderabad, 70060, Sindh, Pakistan

Authors

Keywords

furrow/ridge storage efficiency ; irrigation method ; soil physical properties ; tractor wheel trafficking ; water use efficiency

Divisions of PAS

Nauki Biologiczne i Rolnicze

Coverage

166-171

Publisher

Polish Academy of Sciences; Institute of Technology and Life Sciences - National Research Institute

Bibliography

AHMADI I., GHAUR H. 2015. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction. Journal of Central European Agriculture. Vol. 16(4) p. 489–502. DOI 10.5513/JCEA01/16.4.1657.
BEUTLER A.N., CENTURION J.F., SILVA A.P., CENTURION M.A.P., LEONE C.L., FREDDI O.S. 2008. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesquisa Agropecuaria Brasileira. Vol. 43(11) p. 1591–1600.
BURT C.M., CLEMMENS A.J., STRELKOFF T.S., SOLOMON K.H., BLIESNER K.H., HARDY R.D., HOWELL R.A., EISENHAUER E. 1997. Irrigation performance measures: Efficiency and uniformity. Journal of Irrigation and Drainage Engineering. Vol. 123 p. 423–442. DOI 10.1061/(ASCE)0733-9437(1997)123:6(423).
GHAFFAR A.K., HASSAN A., MUHAMMAD I., ULLAH E. 2015. Assessing the performance of different irrigation techniques to enhance the water use efficiency and yield of maize under deficit water supply. Soil Environment. Vol. 34(2) p. 166–179.
HAMZA M.A., ANDERSON W.K. 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Research. Vol. 82 p. 121–145. DOI 10.1016/j.still.2004.08.009.
IQBAL M., KHALIQ A., CHOUDHRY M.R.I. 1994. Comparison of volume balance and hydrodynamic models for level basin irrigation systems. Pakistan Journal Agricultural Sciences. Vol. 31 p. 37–40.
KIMARO J. 2019. A review on managing agro ecosystems for improved water use efficiency in the face of changing climate in Tanzania. Advances in Meteorology. Vol. 2019 p. 1–12. DOI 10.1155/2019/9178136.
LIPIEC J., HATANO R. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma. Vol. 116 p. 107– 136. DOI 10.1016/S0016-7061(03)00097-1.
LIU L., ZUO Y., ZHANG Q., YANG L., ZHAO E., LIANG L., TONG Y. 2018. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Scientific Reports. Vol. 8(1), 6503. DOI 10.1038/s41598-018-24864-4.
NAWAZ M.F., BOURRIÉ G., TROLARD F. 2013. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development. Vol. 33 p. 291–309. DOI 10.1007/s13593-011-0071-8.
RAMEZANI N., SAYYAD G.A., BARZEGAR A.R. 2017. Tractor wheel compaction effect on soil water infiltration, hydraulic conductivity and bulk density. Malaysian Journal of Soil Science. Vol. 21 p. 47–61.
SAKAI H., NORDFJELL T., SUADICANI K., TALBOT B., BOLLEHUUS E. 2008. Soil compaction on forest soils from different kinds of tires and tracks and possibility of accurate estimate. Croatian Journal of Forest Engineering. Vol. 29 p. 15–27.
SHAIKH I.A., WAYAYOK A., MANGRIO M.A., KHATRI K.L., SOOMRO A., DAHRI S.A. 2017. Comparative study of irrigation advance based infiltration methods for furrow irrigated soils. Pertanika Journal of Science and Technology. Vol. 25(4) p. 1223–1234.
SHIRAZI S.M., ISMAIL Z., AKIB S., SHOLICHIN M., ISLAM M.A. 2011. Climatic parameters and net irrigation requirement of crops. International Journal of Physical Science. Vol. 6(1) p. 15–26. DOI 10.5897/IJPS10.683.
SILVA S., BARROS N., COSTA L., LEITE F. 2008. Soil compaction and eucalyptus growth in response to forwarder traffic intensity and load. Revista Brasileira de Ciência do Solo. Vol. 32 p. 921–932. DOI 10.1590/S0100-06832008000300002.
SIYAL A.A., SIYAL A.G., HASINI M.Y. 2011. Crop production and water use efficiency under subsurface porous clay pipe irrigation. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences. Vol. 27(1) p. 39–50.
SMITH C.W., JOHNSTON M.A., LORENTZ S. 1997. The effect of soil compaction and soil physical properties on the mechanical resistance of South African forestry soils. Geoderma. Vol. 78(1–2) p. 93–111. DOI 10.1016/S0016-7061(97)00029-3.
SORACCO C.G., LOZANO L.A., VILLARREAL R., PALANCAR T.C., COLLAZO D.J., SARLI G.O., FILGUEIRA R.R. 2015. Effects of compaction due to machinery traffic on soil pore configuration. Revista Brasileira de Ciência do Solo. Vol. 39 p. 408–415. DOI 10.1590/01000683 rbcs20140359.
TOLÓN-BECERRA A., BOTTA G.F., LASTRA-BRAVO X. TOURN M., RIVERO D. 2012. Subsoil compaction from tractor traffic in an olive (Olea europea L.) grove in Almería, Spain. Soil Use and Management. Vol. 28(4) p. 606–613. DOI 10.1111/sum.12002.
TRON S., BODNER G., LAIO F., RIDOLFI L., LEITNER D. 2015. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling. Vol. 312 p. 200–210. DOI 10.1016/j.ecolmodel.2015.05.028.
ZHANG S.L., SADRAS V., CHEN X.P., ZHANG F.S. 2014. Water use efficiency of dry land maize in the Loess Plateau of China in response to crop management. Field Crops Research. Vol. 163 p. 55–63. DOI 10.1016/j.fcr.2014.04.003.

Date

2022.03.14

Type

Article

Identifier

DOI: 10.24425/jwld.2022.140386

Aims and scope

Journal of Water and Land Development - is a peer reviewed research journal published in English. Journal has been published continually since 1998. From 2013, the journal is published quarterly in the spring, summer, autumn, and winter. In 2011 and 2012 the journal was published twice a year, and between 1998 and 2010 it was published as a yearbook. Papers may report the results of experiments, theoretical analyses, design of machines and mechanization systems, processes or processing methods, new materials, new measurements methods or new ideas in information technology.


The Journal of Water and Land Development is the quarterly journal devoted to the publication of papers dealing with the following subjects:
- development of water resources in small river basins: assessment of surface and ground water resources, drought and floods, the methods of assessment of man activity influence on water resources;
- sustainable development of agricultural landscape: farm arrangement, wetlands protection, the role of forest and grassland;
- protection of water resources quality: non-point contamination from agriculture, villages and farms, methods of surface and ground water pro-tection;
- irrigation and drainage: management, maintenance and operation, water use, water-crop relations, the influence of drainage and irrigation on environment;
- hydraulic structures for water management in small basins, earth structures, river conservation, etc.

Editorial Board

Editorial Board:

Jan Franklin ADAMOWSKI – McGill University, Quebec, Canada

Tariq AFTAB – Aligarh Muslim University, Alīgarh, India ORCID logo0000-0002-5927-719X

Suleyman I. ALLAKHVERDIEV – Azerbaijan State University, Baku, Azerbaijan

Ozan ARTUN – Çukurova University, Adana, Turkey ORCID logo0000-0002-6122-2729

Habib R. ATHAR – Institute of Pure and Applied Biology, Zakariya University, Multan, Pakistan ORCID logo0000-0002-8733-3865

Atilgan ATILGAN – Alanya Alaaddin Keykubat University, Alanya, Turkey

Okke BATELAAN – Flinders University, Adelaide, Australia ORCID logo0000-0003-1443-6385

Marian BRESTIC – Slovak University of Agriculture, Nitra, Slovakia

Filippo BUSSOTTI – University of Firenze, Firenze, Italy

Shiguo CHEN – Nanjing Agricultural University, Nanjing, China

Ralf DANNOWSKI – Leibniz-Zentrumfür Agrarlandschaftsforschung, Brandenburg, Germany ORCID logo0000-0002-9331-672X

Nabil ELSHERY–Tanta University, Tanta, Egypt ORCID logo0000-0001-9542-1913

Domenica FARCI – Università degli studi di Cagliari, Cagliari, Italy

GOVINDJEE – University of Illinois at Urbana-Champaign, Urbana, USA ORCID logo0000-0003-3774-0638

Francisco GUERRERO – Universidad de Jaén, Jaén, Spain

Salim HEDDAM – Université 20 août 1955-Skikda, Skikda, Algeria ORCID logo0000-0002-8055-8463

Tomasz HORACZEK – Institute of Technology and Life Sciences, Falenty, Poland ORCID logo0000-0001-5534-7544

Miroslava KAČÁNIOVÁ – Slovak University of Agriculture, Nitra, Slovakia

Jan KAZAK – Wroclaw University of Environmental and Life Sciences, Poland

Sungwon KIM – Dongyang University, Yeongju, Republic of Korea ORCID logo0000-0002-9371-8884

Ozgur KISI – University of Applied Sciences, Lübeck, Germany ORCID logo0000-0001-7847-5872

Peter KOVALENKO – Institute of Water Problems and Melioration of the National Academy of Agrarian Sciences, Ukraine

Nour-Eddine LAFTOUHI – Cadi Ayyad University, Marrakesh, Morocco

Ramin LOTFI – Dryland Agricultural Research Institute, AREEO, Maragheh, Iran

Grażyna MASTALERCZUK – Warsaw University of Life Sciences – SGGW, Warsaw, Poland

Maria MRÓWCZYŃSKA – University of Zielona Góra, Poland ORCID logo0000-0002-4762-3999

Samar OMAR – Tanta University, Tanta, Egypt

Dario PIANO – Università degli studi di Cagliari, Cagliari, Italy

Karol PLESIŃSKI – Agricultural University in Cracow, Cracow, Poland

Majeti Narasimha Vara PRASAD – University of Hyderabad, Hyderabad, India

Mahendra RAI – SGB Amravati University, Maharashtra, India

Marcin RAPACZ – University of Agriculture, Cracow, Poland

Manzer H. SIDDIQUI – King Saud University, Riyadh, Saudi Arabia

Edyta SIERKA – University of Silesia, Katowice, Poland

Ewa SOBIESZCZUK-NOWICKA – Adam Mickiewicz University in Poznań, Poznań, Poland ORCID logo0000-0002-6603-0582

Kazimierz STRZAŁKA – Jagiellonian University, Cracow, Poland

Wayan SUPARTA – Institute Technology National Yogyakarta, Yogyakarta, Indonesia

Sawsan TAWKAZ – Consultative Group on International Agricultural Research, Montpellier, France

Adam TAŃSKI – West Pomeranian University of Technology, Szczecin, Poland

Renata TOBIASZ-SALACH – Rzeszow University, Rzeszow, Poland

Katarzyna TURNAU – Jagiellonian University, Cracow, Poland

Martin J. WASSEN – Utrecht University, Utrecht, Netherlands

Marek ZIVCAK – Slovak University of Agriculture, Nitra, Slovak Republic









Abstracting & Indexing

Abstracting & Indexing

Journal of Water and Land Development is covered by the following services:

AGRICOLA (National Agricultural Library)

AGRIS

AGRO

Arianta

Baidu Scholar

Cabell's Whitelist

CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)

CNPIEC - cnpLINKer

Current Geographical Publications Dimensions

DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

Genamics JournalSeek

GeoArchive

GeoRef

Google Scholar

Index Copernicus

Japan Science and Technology Agency (JST)

J-Gate

JournalGuide

JournalTOCs

KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

MyScienceWork

Naver Academic

Naviga (Softweco)

POL-index

Polish Scientific Journals Contents

Primo Central (ExLibris)

ProQuest (relevant databases)

Publons QOAM (Quality Open Access Market)

ReadCube

Reaxys

SCImago (SJR)

SCOPUS

Semantic Scholar

Sherpa/RoMEO

SIGZ

Summon (ProQuest)

TDNet

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

WorldCat (OCLC)

×