Details

Title

Investigating the effects of alumina nanoparticles on the impact resistance of polycarbonate nano-composites

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 3

Affiliation

Alavi Nia, Ali : Department of Mechanical Engineering, Bu Ali Sina University, Hamedan, Iran ; Amirchakhmaghi, Saeed : Department of Mechanical Industrial and Aerospace engineering, Concordia University, Montreal, Canada

Authors

Keywords

nanoparticles ; alumina ; ballistic test ; nano-composite ; polycarbonates ; surface treatments

Divisions of PAS

Nauki Techniczne

Coverage

431-454

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] S. Fu, Y. Wang, and Y. Wang. Tension testing of polycarbonate at high strain rates. Polymer Testing, 28(7):724–729, 2009. doi: 10.1016/j.polymertesting.2009.06.002.
[2] Q.H. Shah and Y.A. Abkar. Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates. International Journal of Impact Engineering, 35(11):1244–125, 2008. doi: 10.1016/j.ijimpeng.2007.07.012.
[3] Q.H. Shah. Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. International Journal of Impact Engineering, 36(9):1128–113, 2009. doi: 10.1016/j.ijimpeng.2008.12.005.
[4] M.R. Edwards and H. Waterfall. Mechanical and ballistic properties of polycarbonate apposite to riot shield applications. Plastic Rubber Composites, 37(1):1–6, 2008. doi: 10.1179/174328908X283177.
[5] I. Livingstone, M. Richards, and R. Clegg. Numerical and experimental investigation of ballistic performance of transparent armour systems. Lightweight Armour Systems Symposium Conference, UK, 10-12 November, 1999.
[6] S.C. Wright, N.A. Fleck, and W.J. Stronge. Ballistic impact of polycarbonate–An experimental investigation. International Journal of Impact Engineering, 13(1):1–20, 1993. doi: 10.1016/0734-743X(93) 90105-G.
[7] M. Rahman, M. Hosur, S. Zainuddin, U. Vaidya, A. Tauhid, A. Kumar, J. Trovillion, and S. Jeelani. Effects of amino-functionalized MWCNTs on ballistic impact performance of E-glass/epoxy composites using a spherical projectile. International Journal of Impact Engineering, 57:108–118, 2013. doi: 10.1016/j.ijimpeng.2013.01.011.
[8] S.G. Kulkarni, X.L. Gao, S.E. Horner, J.Q. Zheng, and N.V. David. Ballistic helmets – Their design, materials, and performance against traumatic brain injury. Composite Structures, 101:313–331, 2013. doi: 10.1016/j.compstruct.2013.02.014.
[9] W. Al-Lafi, J. Jin, and M. Song. Mechanical response of polycarbonate nanocomposites to high velocity impact. European Polymer Journal, 85:354–262, 2016. doi: 10.1016/j.eurpolymj. 2016.10.048.
[10] A. Kurzawa, D. Pyka, and K. Jamroziak. Analysis of ballistic resistance of composites with EN AW-7075 matrix reinforced with Al2O3 particles. Archive of Foundry Engineering, 20(1):73–78, 2020. doi: 10.24425/afe.2020.131286.
[11] P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych. Nanocomposite: synthesis, structure, properties and new application opportunities. Materials Research, 12(1):1–39, 2009. doi: 10.1590/S1516-14392009000100002.
[12] R. Jacob, A.P. Jacob, and D.E. Mainwaring. Mechanism of the dielectric enhancement in polymer–alumina nano-particle composites. Journal of Molecular Structure, 933(1-3):77–85, 2009. doi: 10.1016/j.molstruc.2007.05.041.
[13] X. Zhang and L.C. Simon. In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macromolecular Materials and Engineering, 290(6):573–583, 2005. doi: 10.1002/mame. 200500075.
[14] S. Zhao, L.S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta. Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Composites Science and Technology, 68(14):2965–2975, 2008. doi: 10.1016/j.compscitech.2008.01.009.
[15] S.C. Zunjarrao and R.P. Singh. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Composites Science and Technology, 66(13):2296–2305, 2006. doi: 10.1016/j.compscitech.2005.12.001.
[16] S. Amirchakhmaghi, A. Alavi Nia, Gh. Azizpour, and H. Bamdadi. The effect of surface treatment of alumina nanoparticles with a silane coupling agent on the mechanical properties of polymer nanocomposites. Mechanics of Composite Materials, 51(3):347– 358, 2015. doi: 10.1007/s11029-015-9506-7.
[17] E.A. Ferriter, A. McCulloh, and W. deRosset. Techniques used to estimate limit velocity in ballistic testing with small sample size. In Proceedings of the 13th Annual U.S. Army Research Laboratory Conference, pages 72–95, USA, 2005.
[18] Bayer MateralScience AG., Polycarbonates Business Unit., (2013). www.plastics.bayer.com/Products/Makrolon/ProductList/201305212210/Makrolon- 2807.aspx.
[19] A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, and S. Gong. Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Composites Science and Technology, 68(3-4):768–776, 2008. doi: 10.1016/j.compscitech.2007.08.027.
[20] Z. Zatorski. Diagnostics of ballistic resistance of multi-layered shields. \textit{Archive of Mechanical Engineering, 54(3):205–218, 2007. doi: 10.24425/ame.2007.131555.
[21] H. Motulsky and A. Christopoulos. Fitting Models to Biological Data Using Linear and Nonlinear Regression, a Particle Guide to Curve Fitting. GraphPad Software Inc., San Diego CA, 2003.

Date

6.05.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.140419 ; ISSN 0004-0738, e-ISSN 2300-1895
×