Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 65
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ceaseless progress of nanotechnology, observed in the last years, causes that nanomaterials are more and more often applied in several

fields of industry, technique and medicine. E.g. silver nanoparticles are used in biomedicine for disinfection and polymer nanoparticles

allow insulin transportation in pharmacology. New generation materials containing nanoparticles are also used in the chemical industry

(their participation in the commercial market equals app. 53 %). Nanomaterials are used in electronics, among others for semiconductors

production (e.g. for producing nanoink Ag, which conducts electric current).

Nanomaterials, due to their special properties, are also used in the foundry industry in metallurgy (e.g. metal alloys with nanocrystalline

precipitates), as well as in investment casting and in moulding and core sand technologies. Nanoparticles and containing them composites

are applied in several technologies including foundry practice, automotive industry, medicine, dentistry etc. it is expected that their role

and market share will be successively growing.

Go to article

Authors and Affiliations

A. Kmita
A. Roczniak
Download PDF Download RIS Download Bibtex

Abstract

β-FeSi2 with the addition of B4C nanoparticles was manufactured by sintering mechanically alloyed Fe and Si powders with Mn, Co, Al, P as p and n-type dopants. The consolidated samples were subsequently annealed at 1123 K for 36 ks. XRD analysis of sinters after annealing confirmed nearly full transformation from α and ε into thermoelectric β-FeSi2 phase. SEM observations of samples surface were compliant with the diffraction curves. TEM observations allowed to depict evenly distributed B4C nanoparticles thorough material, with no visible aggregates and establish grain size parameter d2 < 500 nm. All dopants contributed to lower thermal conductivity and Seebeck coefficient, with Co having strongest influence on increasing electrical conductivity in relation to reference FeSi2. Combination of the addition of Co as dopant and B4C nanoparticles as phonon scatterer resulted in dimensionless figure of merit ZT reaching 7.6 × 10–2 at 773 K for Fe0.97Co0.03Si2 compound.
Comparison of the thermoelectric properties of examined sinters to the previously manufactured of the same stoichiometry but without B4C nanoparticles revealed theirs overall negative influence.
Go to article

Bibliography

[1] S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renewable and Sustainable Energy Reviews 65, 698-726 (2016).
DOI : https://doi.org/10.1016/j.rser.2016.07.034
[2] R .M. Ware, D.J. McNeill, Iron disilicide as a thermoelectric generator material, Proc. Inst. Electr. Eng. 111, 178 (1964). DOI : https://doi.org/10.1049/piee.1964.0029
[3] T. Kojima, Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide, Phys. Stat. Sol. (A) 111, 233-242 (1989). DOI : https://doi.org/10.1002/pssa.2211110124
[4] M . Takeda, M. Kuramitsu, M. Yoshio, Anisotropic Seebeck coefficient in β-FeSi2 single crystal, Thin Solid Films 461, 179-181 (2004). DOI : https://doi.org/10.1016/j.tsf.2004.02.066
[5] M . Ito, T. Tada, S. Katsuyama, Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying, J. Alloys Compd. 350, 296-302 (2003). DOI : https://doi.org/10.1016/S0925-8388(02)00964-7
[6] K . Biswas, J. He, I. Blum, et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414-418 (2012). DOI : https://doi.org/10.1038/nature11439
[7] A . Michalski, M. Rosiński, Pulse Plasma Sintering and Applications, Adv. Sinter. Sci. Technol. 219-226 (2017).
[8] K .F. Cai, C.W. Nan, X.M. Min, The effect of silicon addition on thermoelectric properties of a B4C ceramic, Materials Science and Engineering: B 67, 3, 1999, 102-107 (1999). ISSN 0921-5107. DOI : https://doi.org/10.1016/S0921-5107(99)00220-2
[9] Y. Ohba, T. Shimozaki, H. Era, Thermoelectric Properties of Silicon Carbide Sintered with Addition of Boron Carbide, Carbon, and Alumina, Materials Transactions 49, 6, 1235-1241 (2008). DOI : http://dx.doi.org/10.2320/matertrans.MRA2007232
[10] M .J. Kruszewski et al., Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering, J. Electron. Mater. 45, 1369-1376 (2016). DOI : https://doi.org/10.1007/s11664-015-4037-5
[11] A. Michalski, D. Siemiaszko, Nanocrystalline cemented carbides sintered by the PPS method, Int. J. Refract. Met. Hard Mater. 25, 153 (2007). DOI : https://doi.org/10.1016/j.ijrmhm.2006.03.007
[12] A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Diamond-tungsten based coating- copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des. 76, 97 (2015). DOI : https://doi.org/10.1016/j.matdes.2015.03.056
[13] J. Grzonka, J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/ diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99, 188 (2015). DOI : https://doi.org/10.1016/j.matchar.2014.11.032
[14] M. Rosiński, J. Wachowicz, T. Płociński, T. Truszkowski, A. Michalski, Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones, Ceram. Trans. 243, 181 (2014). DOI : https://doi.org/10.1002/9781118771464
[15] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1, 42-56 (2012). DOI : https://doi.org/10.1016/j.nanoen.2011.10.001
[16] F. Dąbrowski, Ł. Ciupiński, J. Zdunek, J. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering, Materials Today: Proceedings 8, 2, 531-539 (2019). DOI : https://doi.org/10.1016/j.matpr.2019.02.050
[17] M. Ito, H. Nagai, S. Katsuyama, K. Majima, Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying, J. Mat. Science 37, 2609-2614 (2002). DOI : https://doi.org/10.1023/A:1015891811725
[18] M . Ito, H. Nagai, T. Tanaka, S. Katsuyama, K. Majima, Thermoelectric performance of n-type and p-type β-FeSi2 prepared by pressureless sintering with Cu addition, J. Alloys Compd. 319, 303-311 (2001). DOI : https://doi.org/10.1016/S0925-8388(01)00920-3
[19] N . Niizeki, et al., Effect of Aluminum and Copper Addition to the Thermoelectric Properties of FeSi2 Sintered in the Atmosphere, Mater. Trans. 50, 1586-1591 (2009). DOI : https://doi.org/10.2320/matertrans.E-M2009808
[20] A . Heinrich, et al., Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films, Thin Solid Films 381, 287-295 (2001). DOI : https://doi.org/10.1016/S0040-6090(00)01758-2
[21] K. Nogi, T. Kita, Rapid production of β-FeSi2 by spark-plasma sintering, J. Mater. Sci. 35, 5845-5849 (2000). DOI : https://doi.org/10.1023/A:1026752206864
[22] J. Tani, H. Kido, Electrical properties of Co-doped and Ni-doped β-FeSi2, J. Appl. Phys. 84, 1408 (1998). DOI : https://doi.org/10.1063/1.368174
[23] H . Nagai, M. Ito, S. Katsuyama, K. Majima, The Effect of Co and Ni Doping on the Thermoelectric Properties of Sintered β-FeSi2, Journal of the Japan Society of Powder and Powder Metallurgy, Released December 04, 2009. DOI : https://doi.org/10.2497/jjspm.41.560
[24] H.Y. Chen, X.B. Zhao, C. Stiewe, D. Platzek, E. Mueller, Microstructures and thermoelectric properties of Co-doped iron disilicides prepared by rapid solidification and hot pressing, J. Alloys Compd. 433, 338-344 (2007). DOI : https://doi.org/10.1016/j.jallcom.2006.06.080
[25] Y . Ohta, S. Miura, Y. Mishima, Thermoelectric semiconductor iron disilicides produced by sintering elemental powders, Intermetallics, 7, 1203-1210 (1999). DOI : https://doi.org/10.1016/S0966-9795(99)00021-7
[26] H .Y. Chen, X.B. Zhao, T.J. Zhu, Y.F. Lu, H.L. Ni, E. Muller, A. Mrotzek, Influence of nitrogenizing and Al-doping on microstructures and thermoelectric properties of iron disilicide materials, Intermetallics 13, 704-709 (2005). DOI : https://doi.org/10.1016/j.intermet.2004.12.019
[27] M . Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2, J. Appl. Phys. 91, 2138-2142 (2002). DOI : https://doi.org/10.1063/1.1436302
[28] X. Qu, S. Lü, J. Hu, Q. Meng, Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering, J. Alloys Compd. 509, 10217-10221 (2011). DOI : https://doi.org/10.1016/j.jallcom.2011.08.070
[29] Y. Ma, R. Heijl, A.E.C. Palmqvist, Composite thermoelectric materials with embedded nanoparticles, J Mater Sci 48, 2767-2778 (2013). DOI : https://doi.org/10.1007/s10853-012-6976-z
[30] T. Wejrzanowski, Computer Assisted Analysis of Gradient Materials Microstructure, Masters Thesis, Warsaw University of Technology (2000).
[31] K. Nogi, T. Kita, X-Q. Yan, Optimum Sintering and Annealing Conditions for β-FeSi2 Formed by Slip Casting, J. Ceram. Soc. Japan 109, 265-269 (2001). DOI : https://doi.org/10.2109/jcersj.109.1267_265
[32] G. Shao, K.P. Homewood, On the crystallographic characteristics of ion beam synthesized, Intermetallics 8, 1405-1412 (2000). DOI : https://doi.org/10.1016/S0966-9795(00)00090-X
Go to article

Authors and Affiliations

F. Dąbrowski
1
ORCID: ORCID
Ł. Ciupiński
1
ORCID: ORCID
J. Zdunek
1
ORCID: ORCID
W. Chromiński
1
ORCID: ORCID
M. Kruszewski
1
ORCID: ORCID
R. Zybała
1 2
ORCID: ORCID
A. Michalski
1
K.J. Kurzydłowski
1

  1. Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics, 32/46, Lotników Str., 02-668 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nanotechnology is a manipulation of nature that has emerged through the use of basic sciences, material science and engineering at the nano-scale. The interaction between biological environment and nanoparticles-nanoparticles or nanoparticles-organic materials is not yet well-understood. The toxic effects of nanoparticles on plants were investigated and it was proved that they caused morphological and physiological changes in plants. This study aimed to determine the effects of TiO -TiO2Ag nanoparticles, and co-application of EDDS-TiO2Ag nanoparticles alone, co-application of ZnO nanoparticles- Ag nanoparticles on seed germination, seedling vigor, radicle and plumule elongation of two different wheat species. In the experimental stage, ten seeds were placed in petri-dishes with a double layer of fi lter paper which was used as an inert material. Then 5 mL of TiO2Ag, ZnO+TiO2Ag, and EDDS+TiO2Ag suspensions were added to every petri dish. Results showed that the maximum SVI was determined at the concentration of 50 mg∙L-1 TiO2 Ag+EDDS for bread wheat and the minimum SVI was observed at 100 mg∙L-1 TiO2Ag nanoparticles concentration for durum wheat. The effect of both nanoparticles-nanoparticles interaction and the other chemicals-nanoparticles interaction on the ecosystems should be evaluated.

Go to article

Authors and Affiliations

G. Doğaroğlu Zeynep
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of the particle size distribution (PSD) of the magnetic fluid with an additional biocompatible dextran layer was studied using a ultrasonic method. The measurements of the ultrasound velocity and attenuation were carried out as a function of the volume concentration of magnetite particles at temperatures ranging from 15°C to 40°C. In order to extract the PSD from ultrasonic measurements, the theoretical model of Vinogradov-Isakovich was used. The extraction of PSD from the ultrasonic data requires also the measurements the density and viscosity of the ferrofluid samples. The calculated PSD of the magnetic fluid with an additional biocompatible layer shows a greater thermal stability than that of a magnetic fluid with a single surfactant layer.
Go to article

Authors and Affiliations

Leszek Dąbek
Tomasz Hornowski
Arkadiusz Józefczak
Andrzej Skumiel
Download PDF Download RIS Download Bibtex

Abstract

The granary weevil, Sitophilus granarius (L.), is one of the most important internal feeders of stored grain. Nanotechnology has become one of the most promising new approaches for pest control in recent years. In our screening program, laboratory trials were conducted to determine the effectiveness of silica nanoparticles (SNPs) and zinc nanoparticles (ZNPs) against the larval stage and adults of S. granarius on stored wheat. Nanoparticles of silica and zinc were synthesized through a solvothermal method. They were then used to prepare insecticidal solutions of different concentrations and tested on S. granarius. Silica nanoparticles (SNPs) were found to be highly effective against S. granarius causing 100% mortality after 2 weeks. ZNPs were moderately effective against this pest.

Go to article

Authors and Affiliations

Mohammad Rouhani
Mohammad Amin Samih
Mehdi Zarabi
Khalil Beiki
Mohammad Gorji
Mohammad Reza Aminizadeh
Download PDF Download RIS Download Bibtex

Abstract

Stability of silver nanoparticles strongly influences the potential of their application. The literature shows wide possibilities of nanoparticles preparation, which has significantly impact on their properties. Therefore, the improvement of AgNPs preparation plays a key role in the case of their practical use. The pH values of the environment are one of the important factors, which directly influences stability of AgNPs. We present a comparing study of the silver nanoparticles prepared by „bottom-up“ methods over by chemical synthesis and biosynthesis using AgNO3 (0.29 mM) solution. For the biosynthesis of the silver nanoparticles, the green freshwater algae Parachlorella kessleri and Citrus limon extracts were used as reducing and stabilizing agents. Chemically synthesized AgNPs were performed using sodium citrate (0.5%) as a capping agent and 0.01% gelatine as a reducing agent. The formation and long term stability of those silver nanoparticles synthesized either biologically and chemically were clearly observed by solution colour changes and confirmed by UV-vis spectroscopy. The pH values of formed nanoparticle solutions were 3 and 5.8 for biosynthesized AgNPs using extract of Citrus limon and Parachlorella kessleri, respectively and 7.2 for chemically prepared AgNPs solution using citrate. The SEM as a surface imaging method was used for the characterization of nanoparticle shapes, size distribution and also for resolving different particle sizes. These micrographs confirmed the presence of dispersed and aggregated AgNPs with various shapes and sizes.
Go to article

Authors and Affiliations

O. Velgosová
A. Mražíková
J. Kavuličová
M. Matvija
E. Čižmárová
J. Willner
Download PDF Download RIS Download Bibtex

Abstract

The nanocomposites based on water glass matrix were attempted in the study. Nanoparticles of ZnO, Al2O3 or MgO in organic solutions

were applied into water glass matrix in the amounts of: 1.5; 3; 4 or 5 mas. %. Wettability of the quartz sad by the nanocomposites based on

water glass matrix was determined by testing changes of the wetting angle θ in time τ for the system: quartz – binder in non-stationary

state, by means of the device for measuring wetting angles. Wettability measurements were carried out under isothermal conditions at an

ambient temperature (20 – 25 oC). The modification improves wettability of quartz matrix by water glass, which is effective in improving

strength properties of hardened moulding sands. Out of the considered modifiers in colloidal solution of propyl alcohol water glass

modified by MgO nanoparticles indicated the smallest values of the equilibrium wetting angle θr. This value was equal app. 11 degrees and

was smaller no less than 40 degrees than θr value determined for not modified water glass. Viscosity η of nanocomposites based on water

glass matrix was determined from the flow curve, it means from the empirically determined dependence of the shearing stress τ on shear

rate γ: τ = f (γ) (1), by means of the rotational rheometer. Measurements were carried out at a constant temperature of 20 oC. The

modification influences the binder viscosity. This influence is conditioned by: amount of the introduced modifier as well as dimensions and

kinds of nanoparticles and organic solvents. The viscosity increase of the modified binder does not negatively influence its functional

properties.

Go to article

Authors and Affiliations

A. Kmita
A. Roczniak
Download PDF Download RIS Download Bibtex

Abstract

Abstract An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of the FT-IR absorption spectra.
Go to article

Authors and Affiliations

A. Bobrowski
A. Kmita
M. Starowicz
B. Hutera
B. Stypuła
Download PDF Download RIS Download Bibtex

Abstract

Three plants extracts were used for biosynthesis of Ag nanoparticles (AgNPs). AgNPs nucleation process requires effective reduction agents which secure Ag+ to Ag0 reduction and also stabilizing/capping agents. The UV-vis and TEM observation revealed that the best results were obtained by R. officinalis leaf extract. The strong SPR band peak appeared at the wavelength 418 nm. Synthetized AgNPs were globular, fine (~20 nm), uniform and stabile throughout the experiment. A rapid rate of AgNPs synthesis was also significant and economically advantageous factor. Fine (10-20 nm) and globular nanoparticles were synthetized also by U. dioica leaf extract, but the stability of nanoparticles was not permanent. Despite V. vitis-idaea fruit extract contains a lot of reducing agents, UV-vis did not confirm the presence of AgNPs in solution. Synthetized Ag particles were very unstable, Ag particles agglomerated very fast and clearly indicated sediment was formed.

Go to article

Authors and Affiliations

O. Velgosová
A. Mražíková
L. Veselovský
J. Willner
A. Fornalczyk
Download PDF Download RIS Download Bibtex

Abstract

Photocatalysis is an efficient and ecological method of water and wastewater disinfection. During the process, various microorganisms are deactivated, including Gram-positive and Gram-negative bacteria, for example Escherichia coli, Staphylococcus aureus, Streptococcus pneumonia, and so on, fungi like Aspergillus niger, Fusarium graminearum, algea ( Tetraselmis suecica, Amphidinium carterae, and so on) and viruses. Titanium dioxide (TiO2) is the most commonly used material due to its price and high oxidation efficiency; it is easy to modify using both physical and chemical methods, what allows for its wide use in industrial scale. Intensive research on novel photocatalysts (e.g. ZnO and carbon based photocatalysis like graphene, carbon nanotube, carbon nitride and others) has been carried out. The future development of nano-disinfection containing metal/metal oxides and carbon based nanoparticles should focus on:
 improving disinfection efficiency through different manufacturing strategies,
 proper clarification and understanding of the role and mechanism of interaction of the nano-material with the microorganisms,
 progress in scaling up the production of commercial nano-photocatalysts,
 determination of the extent of environmental release of nano-photocatalysts and their toxicity.

Go to article

Bibliography


  1. Akasaka, T. & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes, Acta Biomater., 5, pp. 607–612. DOI:10.1016/j.actbio.2008.08.014
  2. Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336, pp. 117–124. DOI:10.1016/j.jcis.2009.03.018
  3. Akhavan, O. & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys.Chem. C, 113, pp. 20214–20220. DOI:10.1021/jp906325q
  4. Akhavan, O., Abdolahad, M., Abdi, Y. & Mohajerzadeh, S. (2009). Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation, Carbon, 47, pp. 3280–3287. DOI:10.1016/j.carbon.2009.07.046
  5. Anis, S.F., Hashaikeh, R. & Hilal, N. (2019). Functional materials in desalination: A review, Desalination, 468, 114077. DOI:10.1016/j.desal.2019.114077
  6. Amin, M.T., Alazba, A.A. & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, Article ID 825910, 24 pages. DOI:10.1155/2014/825910
  7. Anjum, M., Miandad, R., Waqas, M., Gehany, F. & Barakat, M.A. (2019). Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry, 12, pp. 4897-4919. DOI:10.1016/j.arabjc.2016.10.004
  8. Bagchi, D., Bagchi, M., Hassoun, E. & Stohs, S. (1993). Detection of paraquat-induced in vivo lipid peroxidation by gas chromatography/mass spectrometry and high-pressure liquid chromatography, J. Anal. Toxicol., 17, pp. 411–414. DOI:10.1093/jat/17.7.411
  9. Bai, W., Krishna, V., Wang, J., Moudgil, B. & Koopman, B. (2012). Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene, Appl. Catal. B., Environ., 125, pp. 128–135. DOI:10.1016/j.apcatb.2012.05.026
  10. Belapurkar, A.D., Sherkhane, P. & Kale, S.P. (2006). Disinfection of drinking water using photocatalytic technique, Curr. Sci., 91, pp. 73-76. http://www.jstor.org/stable/24094178
  11. Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M. & Rodriguez, J.J. (2019). Semiconductor Photocatalysis for Water Purification, In: Editor(s): Sabu Thomas, Daniel Pasquini, Shao-Yuan Leu, Deepu A. Gopakumar, Micro and Nano Technologies, Nanoscale Materials in Water Purification, Chapter 22, Elsevier, (pp. 581-651). DOI:10.1016/C2017-0-00435-4
  12. Bhadra, P., Mitra, M.K., Das, G.C., Dey, R. & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Engineer. C, 31(5), pp. 929-937. DOI:10.1016/j.msec.2011.02.015
  13. Bing, W., Chen, Z., Sun, H., Shi, P., Gao, N., Ren, J. & Qu, X. (2015). Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res., 8, pp. 1648–1658. DOI:10.1007/s12274-014-0654-1
  14. Blanco-Galvez, J., Fernández-Ibáñnez, S. & Malato-Rodriguez, J. (2007). Solar photocatalytic detoxification and disinfection of water: recent overviews, J. Sol. Energy Eng., 129, pp. 4-15. DOI:10.1115/1.2390948
  15. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micro-pollutants from water environment–state of the art, Archives of Environmental Protection, 37(2), pp. 15–29.
  16. Bodzek, M. & Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Pt 1: Theoretical backgrounds, Ecol. Chem. Eng. S, 19, pp. 489-512. DOI:10.2478/v10216-011-0036-5
  17. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI:10.24425/aep.2019.130237
  18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3-18. DOI:10.24425/aep.2019.126419
  19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021) Nano-photocatalysis in water and wastewater treatment. Desalination and Water Treat., in press.
  20. Bogdan, J., Szczawiński, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2014). Mechanizmy inaktywacji bakterii na powierzcniach fotokatalitycznych, (Mechanisms of bacterial inactivation on photocatalytic surfaces), Med. Weter., 70(11), pp. 657-662. (in Polish)
  21. Bora, T. & Dutta, J. (2014). Applications of Nanotechnology in Wastewater Treatment—A Review, Journal of Nanoscience and Nanotechnology, 14, pp. 613–626. DOI:10.1166/jnn.2014.8898
  22. Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L. & Elimelech, M. (2010). Impact of solution chemistry on viral removal by a single walled carbon nanotube filter, Water Res., 44, pp. 3773–3780. DOI:10.1016/j.watres.2010.04.023
  23. Byrne, C., Subramanianc, G. & Suresh, C.P. (2018). Recent advances in photocatalysis for environmental applications, Journal of Environmental Chemical Engineering, 6, pp. 3531-3555. DOI:10.1016/j.jece.2017.07.080
  24. Cao, B., Cao, S., Dong, P., Gao, J. & Wang, J. (2013). High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93, pp. 349–352. DOI:10.1016/j.matlet.2012.11.136
  25. Chen, Y. & Liu, K. (2017). Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697, pp. 161–173. DOI:10.1016/j.jallcom.2016.12.153
  26. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, pp. 2997-3027. DOI:10.1016/j.watres.2010.02.039
  27. Collivignarelli, M.C., Abbà, A., Benigna, I. Sorlini, S. & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants, Sustainability, 10, 86. DOI:10.3390/su1001008
  28. Dalrymple, O.K., Stefanakos, E., Trotz, M.A. & Goswami, D.Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98, pp. 27–38. DOI:10.1016/j.apcatb.2010.05.001
  29. Danwittayakul, S., Songngam, S. & Sukkasi, S. (2020). Enhanced solar water disinfection using ZnO supported photocatalysts, Environmental Technology, 41(3), pp. 349-356. DOI:10.1080/09593330.2018.1498921
  30. Das, S., Sinha, S., Suar, M., Yun, S.I., Mishra, A., Suraj, K. & Tripathy, K. (2015). Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites, Journal of Photochemistry and Photobiology B, Biology, 142, pp. 68-76. DOI:10.1016/j.jphotobiol.2014.10.021
  31. Davididou, K., Hale, E., Lane, N., Chatzisymeon, E., Pichavant, A. & Hochepied, J.F. (2017). Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn (IV), Catal. Today, 287, pp. 3–9. DOI:10.1016/j.cattod.2017.01.038
  32. Desai, V.S. & Kowshik, M. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique, Res. J. Microbiol., 4, pp. 97-103. DOI:10.3923/jm.2009.97.103
  33. Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O. & Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection, Sustainable Environment Research, 28, pp. 47-56. DOI:10.1016/j.serj.2017.10.001
  34. Doong, R.A. & Liao, C.Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179, pp. 403–411. DOI:10.1016/j.seppur.2017.02.028
  35. El Saeed, A.M., El- Fattah, M.A. & Azzam, A.M. (2015). Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dyes Pigments, 121, pp. 282-289. DOI:10.1016/j.dyepig.2015.05.037
  36. Elkady, M.F., Shokry, H.H., Hafez, E.E. & Fouad, A. (2015). Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg, Chem, Appl., 2015, pp. 1-20. DOI:10.1155/2015/536854
  37. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Tavakkoli, S.M. & Asgharpour, F. (2014). The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Sci. Technol., 70, pp. 763-770. DOI:10.2166/wst.2014.232
  38. Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F. & Mohammadi, S.R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406(1), pp. 112-114, DOI:10.1016/j.physb.2010.10.035
  39. Etacheri, V., Michlits, G., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2013). A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5, pp. 1663–1672. DOI:10.1021/am302676a
  40. Etacheri, V., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2010). Highly visible light active TiO2-xNx heterojunction photocatalysts, Chem. Mater., 22, pp. 3843–3853. DOI:10.1021/cm903260f
  41. Fagan, R., McCormack, D.E., Dionysiou, D.D. & Pillai, S.C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process, 42, pp. 2–14. DOI:10.1016/j.mssp.2015.07.052
  42. Feng, L. & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coordination Chemistry Reviews, 408, 213180. DOI:10.1016/j.ccr.2020.213180
  43. Fernández-Ibáñez, P., Polo-López, M., Malato, S., Wadhwa, S., Hamilton, J., Dunlop, P., D’sa, R., Magee, E., O’shea, K. & Dionysiou D. (2015). Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, pp. 36–44. DOI:10.1016/j.cej.2014.06.089
  44. Fisher, L., Ostovapour, S., Kelly, P., Whitehead, K., Cooke, K., Storgårds, E. & Verran, J. (2014). Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity, Biofouling, 30, pp. 911–919. DOI:10.1080/08927014.2014.939959
  45. Friedmann, D., Mendive, C. & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B, 99, pp. 398-406. DOI:10.1016/j.apcatb.2010.05.014
  46. Ganguly, P., Byrnea, C., Subramanianc, G. & Suresh, C.P. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances, Applied Catalysis B: Environmental, 225, pp. 51-75. DOI:10.1016/j.apcatb.2017.11.018
  47. Gao, P., Ng, K. & Sun, D.D. (2013a). Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light, Journal of Hazardous Materials, 262, pp. 826-835. DOI:10.1016/j.jhazmat.2013.09.055
  48. Gao, P., Liu, J., Sun, D.D. & Ng, W. (2013b). Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 250, pp. 412-420. DOI:10.1016/j.jhazmat.2013.02.003
  49. Gao, Y., Hu, M. & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, Journal of Membrane Science, 455, pp. 349-356. DOI:10.1016/j.memsci.2014.01.011
  50. Garvey, M., Panaitescu, E., Menon, L., Byrne, C., Dervin, S., Hinder, S.J. & Pillai, S.C. (2016). Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens, J. Catal., 344, pp. 631–639. DOI:10.1016/j.jcat.2016.11.004
  51. Hao, R., Wang, G., Tang, H., Sun, L., Xu, C. & Han, D. (2016). Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ., 187, pp. 47–58. DOI:10.1016/j.apcatb.2016.01.026
  52. He, L., Liu, Y, Mustapha, A. & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, pp. 207-215. DOI:10.1016/j.micres.2010.03.003
  53. He, W., Kim, H.K., Wamer, W.G., Melka, D., Callahan. J.H. & Yin, J.J. (2013). Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc., 136, pp. 750–757. DOI:10.1021/ja410800y
  54. Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S. & Guillard C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, pp.31-40. DOI:10.1016/j.jphotochem.2013.11.011
  55. Hu, C., Guo, J., Qu, J. & Hu, X. (2007). Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, pp. 4982–4987. DOI:10.1021/la063626x
  56. Huang, J., Ho, W. & Wang, X. (2014). Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun., 50, pp. 4338–4340. DOI:10.1039/C3CC48374F
  57. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 32, pp. 2650–2653. DOI:10.4236/ijcm.2013.49067
  58. Jin, S.E., Jin, J.E., Hwang, W. & Hong, S.W. (2019). Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection, International Journal of Nanomedicine, 14, pp. 1737—1751. DOI:10.2147/IJN.S192277
  59. Jones, N., Ray, B., Ranjit, K.T. & Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett., 279, pp. 71-76. DOI:10.1111/j.1574-6968.2007.01012.x
  60. Kang, S., Huang, W., Zhang, L., He, M., Xu, S., Sun, D. & Jiang, X. (2018). Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection, Appl. Mater. Interfaces, 10, pp. 13796–13804. DOI:10.1021/acsami.8b00007
  61. Kang, S., Mauter, M.S. & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43, pp. 2648–2653. DOI:10.1021/es8031506
  62. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem, Photobiol. A: Chem., 106, pp. 51–56. DOI:10.1016/S1010-6030(97)00038-5
  63. Koli, V.B., Delekar, S.D. & Pawar, S.H. (2016a). Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites, J Mater Sci., Mater Med., 27, 177. DOI:10.1007/s10856-016-5788-0
  64. Koli, V.B., Dhodamani, A.G., Raut, A.V., Thorat, N.D., Pawar, S.H. & Delekar, S.D. (2016b). Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs, J. Photochem. Photobiol. A., Chem., 328, pp. 50–58. DOI:10.1016/j.jphotochem.2016.05.016
  65. Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz,V.W., Sonntag, H.G. & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, pp. 71-77. DOI:10.1016/S0045-6535(03)00362-X
  66. Lan, Y., Hu, C., Hu, X. & Qu, J. (2007). Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B, Environ., 73, pp. 354–360. DOI:10.1016/j.apcatb.2007.01.004
  67. Li, G., Nie, X., Chen, J., Jiangae, Q., An, T., Wong, P.K., Zhang, H., Zhao, H. & Yamashita, H. (2015). Enhanced visible-light driven photocatalytic inactivation of E. coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res., 86, pp. 17–24. DOI:10.1016/j.watres.2015.05.053
  68. Li, J., Yin,Y., Liu,E., Maa,Y., Wan, J., Fan, J., & Hu, X. (2017). In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation, J. Hazard. Mater., 321, pp. 183–192. DOI:10.1016/j.jhazmat.2016.09.008
  69. Li, Y., Zhang, C., Shuai, D., Naraginti, S., Wang, D. & Zhang, W. (2016). Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism, Water Res., 106, pp. 249–258. DOI:10.1016/j.watres.2016.10.009
  70. Liu, B., Xue, Y., Zhang, J., Han, B., Zhang, J., Suo, X., Mu, L. & Shi, H. (2017). Visible-light driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight, Environ. Sci. Nano, 4(1), pp. 255–264. DOI:10.1039/C6EN00415F
  71. Liu, J., Liu, L., Bai, H., Wang, Y. & Sun, D.D. (2011). Gram-scale production of graphene oxide–TiO2 nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B, Environ., 106, pp. 76–82. DOI:10.1016/j.apcatb.2011.05.007
  72. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang,Y. & Chen, Y. (2009). Sharper and faster ‘Nano Darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, pp. 3891–3902. DOI:10.1021/nn901252r
  73. Liu, Y., Wang, X., Yang, F. & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 114, pp. 431–439. DOI:10.1016/j.micromeso.2008.01.032
  74. Ma, S., Zhan, S., Jia, Y., Shi, Q. & Zho,Q. (2016). Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Appl. Catal. B Environ., 186, pp. 77–87. DOI:10.1016/j.apcatb.2015.12.051
  75. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65, pp. 4094-4098. DOI:10.1128/AEM.65.9.4094-4098.1999
  76. Matsunaga, T., Tamoda, R., Nakajima, T. & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, pp. 211-214. DOI:10.1111/j.1574-6968.1985.tb00864.x
  77. Menaka, R. & Subiya, R. (2016). Synthesis of zinc oxide nano powder and its characterization using XRD, SEM and antibacterial activity against, Int. J. Sci. Res., 5, pp. 269-71.
  78. Michalski, R., Dworniczek, E., Caplovicova, M., Monfort, O., Lianos, P., Caplovic, L. & Plesch, G. (2016). Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite, Appl. Surf. Sci., 371, pp. 538–546. DOI:10.1016/j.apsusc.2016.03.003
  79. Molinari, R., Argurio, P., Bellardita, M. & Palmisano, L. (2017). Photocatalytic processes in membrane reactors, In: Drioli, E., Giorno, L. & Fontananova, E. (Eds.), Comprehensive Membrane Science and Engineering, second edition, 3, (pp. 101–138). Oxford: Elsevier, 2017.
  80. Murugesan, P., Moses, J.A. & Anandharamakrishnan, C. (2019). Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54, pp. 12206–12235. DOI:10.1007/s10853-019-03695-2
  81. Narayanan, P.M., Wilson, W.S., Abraham, A.T. & Sevanan, M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens, Bionanosci., 2, pp. 329-335. DOI:10.1007/s12668-012-0061-6
  82. Nasir, A.M., Awang, N., Hubadillah, S.K., Jaafar, J., Othman, M.H.D. Norhayati. W. Salleh, W. & Ismail, A.F. (2021). A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater, Journal of Water Process Engineering, 42, 102111. DOI:10.1016/j.jwpe.2021.102111
  83. Navale, G.R., Thripuranthaka, M., Late, D.J. & Shinde, S.S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed., 3, 1033.
  84. Ng, T.W., Zhang, L., Liu, J., Huang, G., Wang, W. & Wong, P.K. (2016). Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr, Water Res., 90, pp. 111–118. DOI:10.1016/j.watres.2015.12.022
  85. Ouyang, K., Dai, K., Chen, H., Huang, Q., Gao, C. & Cai, P. (2017). Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation, Ecotoxicol. Environ. Saf., 136, pp. 40–45. DOI:10.1016/j.ecoenv.2016.10.030
  86. Ouyang, K., Dai, K., Walker, S.L., Huang, Q., Yin, X. & Cai, P. (2016). Efficient photocatalytic disinfection of Escherichia coli O157: H7 using C70-TiO2 hybrid under visible light irradiation, Sci. Rep., 6, 25702. DOI:10.1038/srep25702
  87. Padmavathy, N. & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles e an antimicrobial study, Sci. Technol. Adv. Mater., 9, 035004. DOI:10.1088/1468-6996/9/3/035004
  88. Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P. & Chadwick, A.V. (2007). Titania and silver-titania composite films on glass - Potent antimicrobial coatings, Journal of Materials Chemistry, 17, pp. 95-104. DOI:10.1039/b611740f
  89. Pasquini, L.M., Hashmi, S.M., Sommer, T.J., Elimelech, M. & Zimmerman, J.B. (2012). Impact of surface functionalization on bacterial cytotoxicity of single walled carbon nanotubes, Environ. Sci. Technol., 46, pp. 6297–6305. DOI:10.1021/es300514s
  90. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A. & O'shea, K. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, pp. 331–349. DOI:10.1016/j.apcatb.2012.05.036
  91. Petronella, F., Truppi, C., Ingrosso, A., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A. & Comparelli, R. (2016). Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281, pp. 85-100. DOI:10.1016/j.cattod.2016.05.048
  92. Podporska-Carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L. & Pillai, S.C. (2015). Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B: Environ., 176, pp. 70–75. DOI:10.1016/j.apcatb.2015.03.029
  93. Qin, J., Huo, J., Zhang, P., Zeng, J., Wang, T. & Zeng, H. (2015). Improving photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation, Nanoscale, 8, pp. 2249–2259, DOI:10.1039/C5NR06346A
  94. Qu, X., Alvarez, P.J. & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment, Water Res., 47, pp. 3931–3946. DOI:10.1016/j.watres.2012.09.058
  95. Raizada, P., Sudhaik, A. & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review, Materials Science for Energy Technologies, 2(3), pp. 509-525. DOI:10.1016/j.mset.2019.04.007
  96. Rana, S., Srivastava, R., Sorensson, M. & Misra, R. (2005). Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system, Mater. Sci. Eng. B, 119, pp. 144–151. DOI:10.1016/j.mseb.2005.02.043
  97. Rawat, J., Rana, S., Srivastava, R. & Misra, R.D.K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 27, pp. 540–545. DOI:10.1016/j.msec.2006.05.021
  98. Reddy, M.P., Venugopal, A. & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst, Water Res., 41, pp. 379–386. DOI:10.1016/j.watres.2006.09.018
  99. Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter T. & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91, pp. 94-103. DOI:10.1016/j.envint.2016.02.012
  100. Rengifo-Herrera, J., Kiwi, J. & Pulgarin, C.N. (2009). S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A, Chem., 205, pp. 109–115. DOI:10.1016/j.jphotochem.2009.04.015
  101. Rengifo-Herrera, J.A. & Pulgarin, C. (2010). Photocatalytic activity of N, S co-doped and N doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation, Sol. Energy, 84, pp. 37–43. DOI:10.1016/j.solener.2009.09.008
  102. Richter, C., Panaitescu, E., Willey, R.J. & Menon, L. (2007). Titania nanotubes prepared by anodization in fluorine-free acids, J.Mater. Res., 22, pp. 1624-1631. DOI:10.1557/JMR.2007.0203
  103. Rincón, A.G. & Pulgarin, C. (2003). Photocatalytic inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B, 44, pp. 263-284. DOI:10.1016/S0926-3373(03)00076-6
  104. Rtimi, S., Baghriche, O., Pulgarin, C., Lavanchy, J.C. & Kiwi, J. (2013). Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol., 232, pp. 804–813. DOI:10.1016/j.surfcoat.2013.06.102
  105. Rtimi, S., Pulgarin, C., Sanjines, R., Nadtochenko, V., Lavanchy, J.C. & Kiwi, J. (2015). Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 71, pp. 12832–12839. DOI:10.1098/rsfs.2014.0046
  106. Saito, T., Iwase, T., Horie, J. & Morioka, T. (1992). Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, pp. 369–379. DOI:10.1016/1011-1344(92)85115-B
  107. Seery, M.K., George, R., Floris, P. & Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 189, pp. 258-263. DOI:10.1016/j.jphotochem.2007.02.010
  108. Sengupta, J. & Hussain C.M. (2021). Carbon nanomaterials to combat virus: A perspective in view of COVID-19, Carbon Trends 2, 100019. DOI:10.1016/j.cartre.2020.10 0 019
  109. Stan, M.S., Nica, I.C., Dinischiotu, A., Varzaru, E., Iordache, O.G, Dumitrescu, I., Popa, M., Chifiriuc, M.C., Pircalabioru, G.G. & Lazar, V. (2016). Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles, Materials, 9, 78. DOI:10.3390/ma9090789
  110. Sun, L., Du, T., Hu, C., Chen, J., Lu, J., Lu, Z. & Han, H. (2017). Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light, ACS Sustain Chem. Eng., 5, pp. 8693–8701. DOI:10.1021/acssuschemeng.7b01431
  111. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. & Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol. A, 163, pp. 37-44. DOI:10.1016/S1010-6030(03)00428-3
  112. Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Mahrous, H. & Salem, M.F. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens, J Food Saf., 31, pp. 211-218. DOI:10.1111/j.1745-4565.2010.00287.x
  113. Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D. & Wang, G. (2018). Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Chem., 5, pp. 1–17. DOI:10.1016/j.chempr.2018.12.009
  114. Thurston, J.H., Hunter, N.M. & Cornell, K.A. (2016). Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films, RSC Adv., 6, pp. 42240–42248. DOI:10.1039/C6RA05613J
  115. Thurston, J.H., Hunter, N.M., Wayment, L.J. & Cornell, K.A. (2017). Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid. Interface Sci., 505, pp. 910–918. DOI:10.1016/j.jcis.2017.06.089
  116. Wang, S., Yang, S., Quispe, E., Yang, H., Sanfiorenzo, C., Rogers, S.W., Wang, K., Yang, Y. & Hoffmann, M.R. (2021). Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO₂ Nanotube Arrays, ACS ES&T Engineering, 1 (3). pp. 612-622. DOI:10.1021/acsestengg.1c00011
  117. Wang, W., Li, G., An, T., Chan, D.K.L., Yu, J.C. & Wong, P.K. (2018). Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment, Appl. Catal. B Environ., 238, pp. 126–135. DOI:10.1016/j.apcatb.2018.07.004
  118. Wang, W., Yu, J.C., Xia, D., Wong, P.K. & Li, Y. (2013). Graphene and g-C3N4 nanosheets cow rapped elemental a-sulfur as a novel metalfree heterojunction photocatalyst for bacterial inactivation under visible-light, Environ. Sci. Technol., 47, pp. 8724–8732. DOI:10.1021/es4013504
  119. Wang, Y., Wu, Y., Yang, H., Xue, X. & Liu, Z. (2016a). Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity, Vacuum, 131, pp. 58–64. DOI:10.1016/j.vacuum.2016.06.003
  120. Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., Ren, J. & Qu, X. (2016b). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection, Biomaterials, 113, pp. 145–157. DOI:10.1016/j.biomaterials.2016.10.041
  121. Wong, M.S., Chu, W.C., Sun, D.S., Huang, H.S., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. & Chang, H.H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol., 72, pp. 6111-6116. DOI:10.1128/AEM.02580-05
  122. Wu, D., An, T., Li, G., Wang, W., Cai, Y., Yip, H.Y., Zhao, H. & Wong, P.K. (2015). Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite, Appl. Surf. Sci., 358, pp. 137-145. DOI:10.1016/j.apsusc.2015.08.033
  123. Xia, D., Wang, W., Yin, R., Jiang, Z., An, T., Li, G., Zhao, H. & Wong, P.K. (2017). Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species, Appl. Catal. B Environ., 214, pp. 23–33. DOI:10.1016/j.apcatb.2017.05.035
  124. Xu, J., Gao, Q., Bai, X., Wang, Z. & Zhu, Y. (2019). Enhanced visible-light induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles, Catal. Today, 332, pp. 227–235. DOI:10.1016/j.cattod.2018.07.024
  125. Xu, J., Li, Y., Zhou, X., Li, Y., Gao, Z.D., Song, Y.Y. & Schmuki, P. (2016). Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform, Chem. Eur. J., 22, pp. 3947–3951. DOI:10.1002/chem.201505173
  126. Xue, J., Ma, S., Zhou, Y., Zhang, Z. & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces, 7, pp. 9630–9637. DOI:10.1021/acsami.5b01212
  127. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide, Int. J. Inorg. Mater., 3, pp. 643-646. DOI:10.1016/S1466-6049(01)00197-0
  128. Zambrano-Zaragoza, M.L., González-Reza, R. & Mendoza-Muñoz, N. (2018). Nanosystems in edible coatings: A novel strategy for food preservation, International Journal of Molecular Sciences, 19, 705. DOI:10.3390/ijms19030705
  129. Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J.H. & Zhang, X. (2017). Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal. B, Environ., 202, pp. 33–41. DOI:10.1016/j.apcatb.2016.09.014
  130. Zhang, L.L., Chen, B., Xie, L.L. & Li, Z.F. (2011). Study on the antimicrobial properties of ZnO suspension against Gram-positive and Gram-negative bacteria strains, Adv. Mater. Res., 393-5, pp. 1488-1491. DOI:10.4028/www.scientific.net/AMR.393-395.1488
  131. Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H. & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal. B Environ., 152–153, pp. 46–50. DOI:10.1016/j.apcatb.2014.01.023
Go to article

Authors and Affiliations

Michał Bodzek
1
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the influence of selected nanoparticles, namely diesel exhaust particles, Arizona test dust, silver and gold on the rheology of human blood. The rheological properties of human blood were determined with the use of a modular rheometer, at two various temperatures, namely 36.6◦C and 40◦C. Experimental results were used to calculate the constants in blood constitutive equations. The considered models were power-law, Casson and Cross ones. The obtained results demonstrate that the presence of different nanoparticles in the blood may have different effect on its apparent viscosity depending on the type of particles and shear rate.
Go to article

Authors and Affiliations

Urszula Michalczuk
1
Rafał Przekop
1
Arkadiusz Moskal
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents test results of cement paste and binders with admixture of hydrophilic or hydrophobic nanosilica. The aim of the study was to determine the influence of nanosilica type and mixing method on compressive strength, porosity, and bulk density of cement paste, also on hydration heat of cement binders. The binder compounds were mixed in high speed mixer in order to provide the highest possible dispersion of nanoparticles in the binder before adding it to mixing water. Two mixing methods were studied. The admixtures increased the reactivity of cement binders. Both nanosilica types increased early compressive strength by 25% in comparison with control series. The increase in 28-day compressive strength was observed with the admixture of hydrophilic nanosilica. The differences in dynamics of binders rate of hydration and development of cement pastes compressive strength denote different reaction mechanisms of both types of nanosilica. Application of higher rotation speeds does not guarantee satisfactory mixing of the binder components. For compressive strength enhancement of cement paste prolonged mixing time occurred to be more important.

Go to article

Authors and Affiliations

J. Popławski
M. Lelusz
Download PDF Download RIS Download Bibtex

Abstract

Silver nanoparticles (AgNPs) are widely used in numerous industries and areas of daily life, mainly as antimicrobial agents. The particles size is very important, but still not suffi ciently recognized parameter infl uencing the toxicity of nanosilver. The aim of this study was to investigate the cytotoxic effects of AgNPs with different particle size (~ 10, 40 and 100 nm). The study was conducted on both reproductive and pulmonary cells (CHO-9, 15P-1 and RAW264.7). We tested the effects of AgNPs on cell viability, cell membrane integrity, mitochondrial metabolic activity, lipid peroxidation, total oxidative and antioxidative status of cells and oxidative DNA damage. All kinds of AgNPs showed strong cytotoxic activity at low concentrations (2÷13 μg/ml), and caused an overproduction of reactive oxygen species (ROS) at concentrations lower than cytotoxic ones. The ROS being formed in the cells induced oxidative damage of DNA in alkaline comet assay. The most toxic was AgNPs<10 nm. The results indicate that the silver nanoparticles, especially less than 10 nm, may be harmful to the organisms. Therefore, risk should be considered when using nanosilver preparations and provide appropriate protective measures when they are applied.

Go to article

Authors and Affiliations

Lidia Zapór
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Kamel Korib
Nabila Ihaddadene
Rafik Bouakkaz
Yacine Khelili
Download PDF Download RIS Download Bibtex

Abstract

Nanodiagonastic methods in plant pathology are used for enhancing detection and identification of different plant pathogens and toxigenic fungi. Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by using some nanoparticles is emerging as a new area of research. In the current research, silver, zinc, and gold nanoparticles were used to increase the yield of DNA for two plant pathogenic fungi including soil-borne fungus Rhizoctonia solani and toxigenic fungus Alternaria alternata. Gold nanoparticles combined with zinc and silver nanoparticles enhanced both DNA yield and PCR products compared to DNA extraction methods with ALB buffer, sodium dodecyl sulfate, ALBfree from protinase K, ZnNPs and AgNPs. Also, by using ZnNPs and AgNPs the DNA yield was enhanced and the sensitivity of random amplified polymorphic DNA (RAPD) PCR products was increased. Application of nanomaterials in the PCR reaction could increase or decrease the PCR product according to the type of applied nanometal and the type of DNA template. Additions of AuNPs to PCR mix increased both sensitivity and specificity for PCR products of the tested fungi. Thus, the use of these highly stable, commercially available and inexpensive inorganic nano reagents open new opportunities for improving the specificity and sensitivity of PCR amplicon, which is the most important standard method in molecular plant pathology and mycotoxicology.
Go to article

Authors and Affiliations

Fahad A. Al-Dhabaan
Heba Yousef
Tahsin Shoala
Jumana Shaheen
Yousra El Sawi
Tasneem Farag
Download PDF Download RIS Download Bibtex

Abstract

Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI), Pb(II), Cr(III), Cu(II), Zn(II), Ni(II) and Cd(II). The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD), the nanosized crystallites in the sample were agglomerated (SEM) and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET). The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

Go to article

Authors and Affiliations

Magdalena Bobik
Irena Korus
Lidia Dudek
Download PDF Download RIS Download Bibtex

Abstract

In August 2016, tomato plants grown during a hot, wet summer with heavy soil flooding, displaying symptoms of wilting, dead plant, root rot with crown and stem rot, at Beni Suef and Fayoum governorates were examined. A number of 16 fungal isolates were isolated from tomato plants displaying the above symptoms. These isolates were classified as belonging to six species, namely: Alternaria solani, Chaetomium globosum, Fusarium solani, Fusarium oxysporum, Pythium spp. and Rhizoctonia solani. Isolates of Pythium spp. were prevalent and were found to be more pathogenic than the other fungal isolates. This species causes damping-off, root rot, sudden death, stem rot and fruit rot. The pathogen was identified as Pythium aphanidermatum based on morphological, cultural, and molecular characteristics. Biogenic silver nanoparticles (AgNPs) were produced using the F. oxysporum strain and characterized by transmission electron microscopy (TEM). The size of these spherical particles ranged from 10 to 30 nm. In vitro, biogenic AgNPs showed antifungal activity against P. aphanidermatum. In greenhouse and field experiments, AgNPs treatment significantly reduced the incidence of dead tomato plants due to root rot caused by P. aphanidermatum compared to the control. All of the investigated treatments were effective and the treatment of root dipping plus soil drenching was the most effective. To the best of our knowledge, this study describes P. aphanidermatum on tomato in Egypt for the first time. Also, biogenic AgNPs could be used for controlling root rot disease caused by this pathogen.
Go to article

Authors and Affiliations

Ibrahim Elshahawy
Hesham Mohamed Abouelnasr
Sirag Mohamed Lashin
Osama Mohamed Darwesh
Download PDF Download RIS Download Bibtex

Abstract

Because of excellent properties, similar to natural bone minerals, and variety of possible biomedical applications, hydroxyapatite (HAp) is a valuable compound among the calcium phosphate salts. A number of synthesis routes for producing HAp powders have been reported. Despite this fact, it is important to develop new methods providing precise control over the reaction and having potential to scale-up. The main motivation for the current paper is a view of continuous synthesis methods toward medical application of produced hydroxyapatite, especially in the form of nanoparticles.

Go to article

Authors and Affiliations

Joanna Latocha
Michał Wojasiński
Paweł Sobieszuk
Tomasz Ciach
Download PDF Download RIS Download Bibtex

Abstract

Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100) comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD). The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP) method and by the axisymmetric drop shape analysis (ADSA). Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s). In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s). Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.

Go to article

Authors and Affiliations

Katarzyna Jabłczyńska
Tomasz R. Sosnowski
Download PDF Download RIS Download Bibtex

Abstract

Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10–3 (without polymer) to 7.15·10–5s–1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102s–1M–1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow.

Go to article

Authors and Affiliations

M. Luty-Błocho
Download PDF Download RIS Download Bibtex

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.

Go to article

Authors and Affiliations

Maciej J. Głowacki
Marcin Gnyba
Paulina Strąkowska
Mateusz Gardas
Maciej Kraszewski
Michał Trojanowski
Marcin R. Strąkowski
Download PDF Download RIS Download Bibtex

Abstract

Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. %=0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.

Go to article

Authors and Affiliations

Amir Arya
Saeed Shahmiry
Vahid Nikkhah
Mohamad Mohsen Sarafraz
Download PDF Download RIS Download Bibtex

Abstract

Silver coatings have a very high reflection ability. To avoid their darkening from the hydrogen sulphide in the air, a thin layer of heat-resistant colorless lacquer is applied to the coatings. Silver plating is mainly used in jewelery, optics, electronics and electrical engineering. Depending on their application the thickness of the layer may vary from 2 to 24 μm. It can be done in several ways: chemical, electrochemical, contact, etc. The most common way of silver plating is the electrochemical deposition using cyanide and non-cyanide electrolytes. The cyanide electrolytes produce light, fine crystalline, dense and plastic coatings upon silver-plating. Usually silver coatings are applied with copper or nickel intermediate layer. In order to improve the de-oxidation of the aluminum surface new chemical treatment in acid – alkaline solution was applied. Our previous research shows that the presence of diamond nanoparticles in the electrolyte increase the metal deposition. Samples were prepared from electrolyte containing 10 g/l diamond nanoparticles. Their properties were compared to the properties of reference samples. The diamonds were obtained by detonation synthesis. The aim of this study is to obtain electrochemically deposited silver layer with high density, adhesion and electric conductivity on aluminum alloys substrate. The coatingwas directly plated without intermediate layer. Non-cyanide electrolyte composition and electrochemical parameters were determined in order to produce Ag coatings on Al alloy substrate without intermediate layer. The coating is with good adhesion, density and thickness of 14-23 μm.

Go to article

Authors and Affiliations

R. Valov
V. Petkov
S. Valkano
Download PDF Download RIS Download Bibtex

Abstract

Antibiotics are used for postsurgical wound healing purposes but unfortunately, resistance against them demands some alternatives for quick recovery. Sepsis of wounds is a challenge for medical as well as veterinary professionals. Nanoparticles have significant advantages in wound treatment and drug resistance reversal. This study was conducted to appreciate emerging alternates of antibiotics like zinc oxide nanoparticles and plant extracts in topical application. Zinc oxide is considered a good wound healer and its nanoparticles are easy to access. So, the efficacies of zinc oxide nanoparticles and sweet flag plant extract ointments were tested to compare modern and traditional therapeutics as sweet flag is considered a pure medicinal plant. Rabbits were selected for this study due to the healing properties of their skin. Wounds were inflicted on the thoracolumbar region and treated for 29 days post-surgically daily with normal saline and the ointment of zinc oxide nanoparticles and sweet flag extract ointment, prepared in a hydrophilic solvent. Wound shrinkage was observed daily and histopathological analysis was made and results were compared. Zinc oxide nanoparticles ointment showed the most satisfactory results for every parameter included in the study. No side effects of its topical application were observed. Healing was normal without any complications. The preparations of zinc oxide nanoparticles may help in the era of antibiotic resistance as topical drugs in the future.
Go to article

Authors and Affiliations

A. Abbas
1 2
S.A. Muhammad
3
A. Ashar
4
S.A. Mehfooz
2
A. Rauf
3
M. Bakhsh
3
T. Nadeem
5
H. Fu
1

  1. Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
  2. Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan
  3. University of Veterinary and Animal Sciences, Lahore, CVAS Jhang 35200, Pakistan
  4. Wilson College of Textiles, North Carolina State University, North Carolina, USA
  5. University of Veterinary and Animal Sciences, Lahore, Para Veterinary Institute (PVI), Karor 31100, Layyah, Pakistan

This page uses 'cookies'. Learn more