Details

Title

Implementation of turbulence damping in the OpenFOAM multiphase flow solver interFoam

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 1

Authors

Affiliation

Polansky, Jiri : Czech Technical University in Prague, Jugoslávských partyzánu 1580/3, 160 00 Prague 6 – Dejvice, Czech Republic ; Schmelter, Sonja : Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin-Charlottenburg, Germany

Keywords

Multiphase flow ; Stratified flow ; Turbulence damping ; Computational fluid dynamics ; OpenFOAM ; Reynolds-averaged Navier–Stokes ; Detached eddy simulation ; Delayed detached eddy simulation

Divisions of PAS

Nauki Techniczne

Coverage

21-43

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Egorov Y., Boucker M., Martin A., Pigny S., Scheuerer M., Willemsen S.: Validation of CFD codes with PTS-relevant test cases. Tech. Rep. EVOL-ECORAD07, 2004.
[2] Fabre J., Masbernat L., Suzanne C.: Stratified flow. Part I: Local structure. Multiphas. Sci. Technol. 3(1987), 285–301.
[3] Höhne T., Vallée C.: Experiments and numerical simulations of horizontal twophase flow regimes using an interfacial area density model. J. Comput. Multiphas. Flow. 2(2010), 3, 131–143.
[4] Vallée C., Höhne T.: CFD validation of stratified two-phase flows in a horizontal channel. In: Annual Report 2006 (F.-P. Weiss, U. Rindelhardt, Eds.), FZR-465, Forschungszentrum Dresden Rossendorf, 2007, 33–38.
[5] Frederix E.M.A., Mathur A., Dovizio D., Geurts B.J., Komen E.M.J.: Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nucl. Eng. Design 333(2018), 122–130.
[6] Höhne T., Vallée C.: Modelling of stratified two phase flows using an interfacial area density model. In: Proc. Multiphase Flow 2009, 5th Int. Conf. on Computational and Experimental Methods in Multiphase and Complex Flow, New Forest, 15-17 June, 2009, 123–133.
[7] Höhne T., Mehlhoop J.-P.: Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows. Int. J. Multiphas. Flow 62(2014), 1–16.
[8] Porombka P., Höhne,T.: Drag and turbulence modelling for free surface flows within the two-fluid Euler–Euler framework. Chem. Eng. Sci. 134(2015), 348–359.
[9] Ansys Fluent User’s Guide. Release 2021 R1. Ansys, Inc., Canonsburg 2021.
[10] Chinello G., Ayati A.A., McGlinchey D., Ooms G., Henkes R.: Comparison of computational fluid dynamics simulations and experiments for stratified air-water flows in pipes. J. Fluid. Eng. 141(2019), 5, 051302-1–051302-12.
[11] Gada V.H., Tandon M.P., Elias J., Vikulov R., Lo S.: A large scale interface multi-fluid model for simulating multiphase flows. Appl. Math. Model. 44(2017), 189–204.
[12] Lo S., Tomasello A.: Recent progress in CFD modelling of multiphase flow in horizontal and near-horizontal pipes. In: Proc. 7th North American Conf. on Multiphase Technology, Banff, June 2010, BHR-2010-F1.
[13] Fan W., Li H., Anglart H.: Numerical investigation of spatial and temporal structure of annular flow with disturbance waves. Int. J. Multiphas. Flow 110(2019), 256–272.
[14] Fan W., Anglart H.: Progress in phenomenological modeling of turbulence damping around a two-phase interface. Fluids 4(2019), 3, 136.
[15] Fan W., Anglart H.: varRhoTurbVOF 2: Modified OpenFOAM volume of fluid solvers with advanced turbulence modeling capability. Comput. Phys. Commun. 256(2020), 107467.
[16] Wilcox D.C.: Turbulence Modeling for CFD Vol. 2. DCW Industries, La Canada 1998.
[17] Menter F., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. In: Turbulence, Heat and Mass Transfer 4 (K. Hanjalic, Y. Nagano, M. Tummers, Eds.). Begell House, 2003.
[18] Langtry R.B., Menter F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(2009), 12, 2894–2906.
[19] Egorov Y., Menter F.: Development and application of SST-SAS turbulence model in the desider project. In: Advances in Hybrid RANS-LES Modelling (S.-H. Peng, W. Haase, Eds.), Springer, Berlin Heidelberg, 2008, 261–270.
[20] Strelets M.: Detached eddy simulation of massively separated flows. In: Proc. 39th AIAA Aerospace Sciences Meet. Exhib., Reno, Jan. 8-11, 2001.
[21] Gritskevich M., Garbaruk A., Schütze J., Menter F.: Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow Turbul. Combust. 88(2012), 3, 431–449.
[22] Müller-Steinhagen H., Heck K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20(1986), 6, 297–308.
[23] Launder B., Spalding D.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(1974), 2, 269– 289.
[24] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994), 8, 1598–1605.
[25] Spalart P., Deck S., Shur M., Squires K., Strelets M., Travin A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(2006), 181–195.
[26] Frank T.: Numerical simulation of slug flow regime for an air-water two-phase flow in horizontal pipes. In: Proc. 11th Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, Oct. 2–6, 2005.

Date

2022.04.13

Type

Article

Identifier

DOI: 10.24425/ather.2022.140923

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×