Details
Title
Examination of the Force Parameters in Drawing Process of CuZn39Pb3 Cast Rod using Selected LubricantsJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 4Authors
Affiliation
Jabłoński, Michał : AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, PolandKeywords
Plastic working ; mechanical properties ; Lubricant ; coefficient of friction ; CuZn39Pb3 cast rodDivisions of PAS
Nauki TechniczneCoverage
99-104Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Wright, R.N. (2016). A Brief History of Technology. In Wire Technology: Process Engineering and Metallurgy (7-12). USA: Elsevier Ltd.[2] Lenard, J.G. (2002). Friction, Lubrication and Surface Response in Wire Drawing. In Metal Forming Science and Practice (297-312). USA: Elsevier Ltd.
[3] Blake-Coleman, B.C. (1992). Wire making Technology. In Copper Wire and Electrical Conductors - The Shaping of a Technology (1-73). Switzerland: Harwood Academic Publishers.
[4] Calladine, C.R. (1969). Engineering Plasticity. UK: Elsevier Ltd., 235-274.
[5] Byon, S.M., Lee, S. J., Lee, D.W., Lee, Y. H. & Lee, Y. (2011). Effect of coating material and lubricant on forming force and surface defects in wire drawing process. Transactions of Nonferrous Metals Society of China. China, 21(1), 104-110. https://doi.org/10.1016/S1003-6326(11)61071-6 .
[6] Xu, D.C., Zhai, S.Y., Cheng, H.Y., Guadie, A., Wang, H.C., Han, J.L., Liu, C.Y. & Wang, A.J. (2020). Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems. Environmental Research. 191, 110093, 1-9. https://doi.org/10.1016/j.envres.2020.110093 .
[7] Utsunomiy, H., Takagishi, S., Ito, A. & Matsumoto, R. (2013). Lubrication using porous surface layer for cold drawing of steel wire. CIRP Annals. 62(1), 235-238. https://doi.org/10.1016/j.cirp.2013.03.120 .
[8] Arentoft, M., Bay, N., Tang, T.P. & Jensen, D.J. (2009). A new lubricant carrier for metal forming. CIRP Annals. 58(1), 243-246. https://doi.org/10.1016/j.cirp.2009.03.062 .
[9] Dixit, U.S. & Dixit, P.M. (1995). An analysis of the steady-state wire drawing of strain-hardening materials. Journal of Materials Processing Technology. 47(3-4), 201-229. https://doi.org/10.1016/0924-0136(95)85000-7 .
[10] Moon, C. & Kim, N. (2012). Analysis of wire-drawing process with friction and thermal conditions obtained by inverse engineering. Journal of Mechanical Science and Technology. 26(9), 2903-2911. ttps://doi.org/10.1007/ s12206-012-0711-1 .
[11] El-Domiaty, A. & Kassab, S. Z. (1998). Temperature rise in wire-drawing. Journal of Materials Processing Technology. 83(1-3), 72-83. https://doi.org/10.1016/S0924-0136(98)00045-4 .
[12] Liu, S., Shan, X., Guo, K., Yang, Y. & Xie, T. (2018). Experimental study on titanium wire drawing with ultrasonic vibration. Ultrasonics, 83, 60-67. https://doi.org/10.1016/j.ultras.2017.08.003.
[13] Du, P., Kishimoto, T. & Furushima, T. (2023). Uniforming outer diameter by control of microstructural evolution for biodegradable ZM21 magnesium alloy tube during dieless drawing. Journal of Materials Processing Technology. 312, 117831, 1-12. https://doi.org/10.1016/j.jmatprotec. 2022.117831 .
[14] Tiernan, P. & Hillery, M. T. (2008). An analysis of wire manufacture using the dieless drawing method. Journal of Manufacturing Processes. 10(1), 12-20. https://doi.org/10.1016/j.manpro.2008.05.001 .
[15] Wang, Z.T., Luan, G.F. & Bai, G.R. (1999). Study of the deformation velocity field and drawing force during the dieless drawing of tube. Journal of Materials Processing Technology. 94(2-3), 73-77. https://doi.org/10.1016/S0924-0136(98)00452-X .
[16] El Amine, K., Larsson, J. & Pejryda, L. (2018). Experimental comparison of roller die and conventional wire drawing. Journal of Materials Processing Technology. 257, 7-14. https://doi.org/10.1016/j.jmatprotec.2018.02.012.
[17] Pilarczyk, J.W., Van Houtte, P. & Aernoudt, E. (1995). Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires. Materials Science and Engineering: A. 197(1), 97-101. https://doi.org/10.1016/0921-5093(94)09756-9.
[18] Kwaśniewski, P., Knych, T., Mamala, A., Kiesiewicz, G., Walkowicz, M., Smyrak, B., Kawecki, A., Uliasz, P. & Piwowarska, M. (2014). PL 218241 B1. Method for continuous casting of crystalline materials and apparatus for horizontal continuous casting of crystalline materials. Patent Office of the Republic of Poland, 2-14.
[19] EN 12164. (2016). Copper and copper alloys - Rod for free machining purposes. European Standards, 23.
[20] Łuksza, J. (2001). Elementy ciągarstwa. Polska: Wydaw. AGH. [21] PN-EN ISO 6892-1. (2020). Metals - Tensile Test - Part 1: Room Temperature Test Method. International Organization for Standardization.
[22] PN-EN ISO 21920-1. (2022). Geometrical product specifications (GPS) — Surface texture: Profile - Part 1: Indication of surface texture. International Organization for Standardization.
[23] Portevin, A. & Le Chatelier, F. (1923). Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. Comptes Rendus de l’Académie des Sciences Paris, 176, 507-510.
[24] Cottrell, A.H. (1953). A note on the Portevin–Le Chatelier effect. Philosophical Magazine. 44, 829-832.