Details
Title
Electricity generation in a ceramic separator microbial fuel cell employing a bacterial consortium for penicillin removalJournal title
Archives of Environmental ProtectionYearbook
2023Volume
vol. 49Issue
No 4Authors
Affiliation
Chaijak, Pimprapa : Thaksin University, Thailand ; Kongthong, Alisa : Thaksin University, Thailand ; Thipraksa, Junjira : Thaksin University, Thailand ; Michu, Panisa : Thaksin University, ThailandKeywords
bioelectricity generation ; biodegradation ; laccase ; microbial fuel cell ; penicillin ; swine wastewaterDivisions of PAS
Nauki TechniczneCoverage
27-36Publisher
Polish Academy of SciencesBibliography
[1]. Ahilan, V., Bhowmick, G.D., Ghangrekar, M.M., Wilhelm, M. & Rezwan, K. (2019). Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell, Inonics, 25, pp. 5907-5918. DOI:10.1007/s11581-019-03083-5[2]. Ajayi, F.F. & Weigele, P.R. (2012). A terracotta bio-battery, Bioresource Technology, 116, pp. 86-91. DOI:10.1016/j.biortech.2012.04.019
[3]. Al-Dhabi, N.A., Esmail, G.A. & Arasu, M.V. (2021). Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor, Chemosphere, 268, pp. 128726. DOI:10.1016/j.chemosphere.2020.128726
[4]. Ambika, A., Kumar, V., Jamwal, A., Kumar, V. & Singh, D. (2022). Green bioprocess for degradation of synthetic dyes mixture using consortium of laccase-producing bacteria from Himalayan niches, Journal of Environmental Management, 310, pp. 114764. DOI:10.1016/j.jenvman.2022.114764
[5]. Bhakta, J. & Munekage, Y. (2011). Mercury(II) Adsorption onto the magnesium oxide impregnated volcanic ash soil derived ceramic from aqueous phase, International Journal of Environmental Research, 5, pp. 585-594. DOI:10.22059/ijer.2011.365
[6]. Bhakta, J.N. & Munekage, Y. (2013). Identification of potential soil adsorbent for the removal of hazardous metals from aqueous phase, International Journal of Environmental Science and Technology, 10, pp. 315-324. DOI:10.1007/s13762-012-0116-9
[7]. Chaijak, P. & Michu, P. (2022). Modified water hyacinth biochar as a low-cost supercapacitor electrode for electricity generation from pharmaceutical wastewater, Polish Journal of Environmental Studies, 31, 6, pp. 5471-5475. DOI:10.15244/pjoes/150463
[8]. Chaijak, P. & Thipraksa, J. (2022). Improved performance of a novel-model laccase based microbial fuel cell (LB-MFC) with edible mushroom as a whole-cell biocatalyst, Polish Journal of Environmental Studies, 31, 5, pp. 4481-4485. DOI:10.15244/pjoes/147196
[9]. Chen, R., Zhang, Z., Feng, C., Lei, Z., Li, Y., Li, M., Shimizu, K. & Sugiura, N. (2010). Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization, Applied Surface Science, 256, 9, pp. 2961-2967. DOI:10.1016/j.apsusc.2009.11.058
[10]. Cheng, D., Ngo, H.H., Guo, W., Lee, D., Nghiem, D.L., Zhang, J., Liang, S., Varjani, S. & Wang, J. (2020). Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics, Bioresource Technology, 311, pp. 123588. DOI:10.1016/j.biortech.2020.123588
[11]. Copete-Pertuz, L.S., Placido, J., Serna-Galvis, E.A., Torres-Palma, R.A. & Mora, A. (2018). Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal, The Science of The Total Environment, 630, pp. 1195-1204. DOI:10.1016/j.scitotenv.2018.02.244
[12]. Das, I., Das, S., Dixit, R. & Ghangrekar, M.M. (2020). Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics, 26, pp. 3061-3072. DOI:10.1007/s11581-020-03472-1
[13]. Ding, D., Lei, Z., Yang, Y. & Zhang, Z. (2014). Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chemical Engineering Journal, 236, pp. 17-28. DOI:10.1016/j.cej.2013.09.075
[14]. Eliato, T.R., Pazuki, G. & Majidian, N. (2016). Potassium permanganate as an electron receiver in a microbial fuel cell, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 5, pp. 644-651. DOI:10.1080/15567036.2013.818079
[15]. Feng, L., Casas, M.E., Ottosen, L.D.M., Moller, H.B. & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure, Science of The Total Environment, 603-604, pp. 219-225. DOI:10.1016/j.scitotenv.2017.05.280
[16]. Garcia, D., Posadas, E., Grajeda, C., Blanco, S., Martinez-Paramo, S., Acien, G., Garcia-Encina, P., Bolado, S. Munoz, R. (2017). Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, Bioresource Technology, 245, pp. 483-490. DOI:10.1016/j.biortech.2017.08.135
[17]. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, pp. 122350. DOI:10.1016/j.biortech.2019.122350
[18]. Ghadge, A.N. & Ghangrekar, M.M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells, Electrochimica Acta, 166, 1, pp. 320-328. DOI:10.1016/j.electacta.2015.03.105
[19]. Ghadge, A.N., Jadhav, D.A. & Ghangrekar, M.M. (2016). Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications, Environmental Progress & Sustainable Energy, 35, 6, pp. 1809-1817. DOI:10.1002/ep.12403
[20]. Ghadge, A.N., Sreemannarayana, M., Duteanu, N. & Ghangrekar, M.M. (2014). Influence of ceramic separator’s characteristics on microbial fuel cell performance, Electrochemical Engineering, 4, 4, pp. 315-326. DOI:10.5599/jese.2014.0047
[21]. Ghasemi, M., Daud, W.R.W., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M. & Liew, K.B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, International Journal of Hydrogen Energy, 38, 13, pp. 5480-5484. DOI:10.1016/j.ijhydene.2012.09.148
[22]. Goto, Y. & Yoshida, N. (2019). Scaling up microbial fuel cells for treating swine wastewater. Water, 11, 9, pp. 1803. DOI:10.3390/w11091803
[23]. Guang, L., Koomson, D.A., Jingyu, H., Ewusi-Mensah, D. & Miwornunyuie, N. (2020). Performance of exoelectrogenic bacteria used in microbial desalination cell technology, International Journal of Environmental Research and Public Health, 17, 3, 1, pp. 1121. DOI:10.3390/ijerph17031121
[24]. He, L.Y., Ying, G.G., Liu, Y.S., Su, H.C., Chen, J., Liu, S.S. & Zhao, J.L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments, Environment International, 92-93, pp. 210-219. DOI:10.1016/j.envint.2016.03.023
[25]. Jahan, N., Tahmid, M., Shoronika, A.Z., Fariha, A., Roy, H., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). A comprehensive review on the sustainable treatment of textile wastewater: Zero liquid discharge and resource recovery perspectives, Sustainability, 14, pp. 15398. DOI:10.3390/su142215398
[26]. Ji, M., Su, X., Zhao, Y., Qi, W., Wang, Y., Chen, G. & Zhang, Z. (2015). Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism, Applied Surface Science, 344, pp. 128-136. DOI:10.1016/j.apsusc.2015.03.006
[27]. Kim, D.P., Saegerman, C., Douny, C., Dinh, T.V., Xuan, B.H., Vu, B.D., Hong, N.P. & Scippo, M.L. (2013). First survey on the use of antibiotics in pig and poultry production in the Red River Delta Region of Vietnam, Food and Public Health, 3, 5, pp. 247-256. DOI:10.5923/j.fph.20130305.03
[28]. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for bioelectricity generation of microbial fuel cells, Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
[29]. Kim, T., An, J., Jang, J.K. & Chang, I.S. (2020). Determination of optimum electricity connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and electricity recover, Bioresource Technology, 297, pp. 122464. DOI:10.1016/j.biortech.2019.122464
[30]. Krasnikova, A.V. & Iozep, A.A. (2003). Structure of chemical compounds, Methods of analysis and process control, Pharmaceutical Chemistry Journal, 37, 9, pp. 504.
[31]. Kusada, H., Zhang, Y., Takami, H., Kimura, N. & Kamagata, Y. (2019). Novel N-Acyl Homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities, Frontiers in Microbiology, 10, pp. 445, 2019. DOI:10.3389/fmicb.2019.00455
[32]. Li, H., Xu, H., Yang, Y.L., Yang, X.L., Wu, Y., Zhang, S. & Song, H.L. (2019). Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland, Water Research, 165, pp. 114988. DOI:10.1016/j.watres.2019.114988
[33]. Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L. & Zhou, Y. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process, Journal of Environmental Science (China), 89, pp. 252-263. DOI:10.1016/j.jes.2019.08.015
[34]. Masse, D.I., Lu, D., Masse, L. & Droste, R.L. (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technology, 75, 3, pp. 205-211. DOI:10.1016/S0960-8524(00)00046-8
[35]. Michu, P. & Chaijak, P. (2022). Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell, Communication in Science and Technology, 7, 1, pp. 98-102. DOI:10.21924/cst.7.1.2022.799
[36]. More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S. & Veena, S.M. (2011). Isolation, purification, and characterization of fungal laccase from Pleurotus sp., Enzyme Research, 2011, pp. 248735. DOI:10.4061/2011/248735
[37]. Mukhopadhyay, D., Khan, N., Kamal, N., Varjani, S., Singh, S., Sindhu, R., Gupta, P. & Bhargava, P.C. (2022). Degradation of beta-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system, Bioresource Technology, 361, pp. 127605. DOI:10.1016/j.biortech.2022.127605
[38]. Nguyen, T.T., Soda, S., Kanayama, A. & Hamai, T. (2021). Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands, Water, 13, 14, pp. 1937. DOI:10.3390/w13141937
[39]. Ni, H., Wang, K., Lv, S., Wang, X., Zhuo, L. & Zhang, J. (2020). Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater, Energies, 13, 9, pp. 2231. DOI:10.3390/en13092231
[40]. Piontek, K., Antorini, M. & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers, Journal of Biological Chemistry, 277, 40, pp. 37663. DOI:10.1074/jbc.M204571200
[41]. Portis, E., Lindeman, C., Johansen, L. & Stoltman, G. (2012). A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada. Journal of Veterinary Diagnostic Investigation, 24, 5, pp. 932-944. DOI:10.1177/1040638712457559
[42]. Prosekov, A.Y. Ivanova, S.A. (2018). Food security: The challenge of the present, Geoforum, 91, 1, pp. 73-77. DOI:10.1016/j.geoforum.2018.02.030
[43]. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54, 3, pp. 745-756. DOI:10.1016/j.aej.2015.03.031
[44]. Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, 88, 11, pp. 3999-4004. DOI:10.1016/j.apenergy.2011.04.017
[45]. Rahman, T.U., Roy, H., Islam, M.R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). The advancement in membrane reactor (MBR) technology toward sustainable industrial wastewater management, Membranes, 13, pp. 181. DOI:10.3390/membranes13020181
[46]. Ren, B., Wang, T. & Zhao, Y. (2021). Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation, Chemoshpere, 268, pp. 128803. DOI:10.1016/j.chemosphere.2020.128803
[47]. Rossi, R., Jones, D., Myung, J., Zikmund, E., Yang, W., Gallego, Y.A., Pant, D., Evans, P.J., Page, M.A., Cropek, D.M. & Logan, B.E. Evaluating a multi-panel air cathode through electrochemical and biotic tests, Water Research, 148, pp. 51-59. DOI:10.1016/j.watres.2018.10.022
[48]. Santos, F., Almeida, C.M.R., Ribeiro, I. & Mucha, A.P. (2019). Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater, Ecological Engineering, 129, pp. 45-53. DOI:10.1016/j.ecoleng.2019.01.007
[49]. Shang, S., Fan, H., Li, Y., Li, L. & Li, Z. (2022). Preparation of lightweight ceramsite from solid waste using SiC as a foaming agent, Materials (Basel), 15, 1, pp. 325. DOI:10.3390/ma15010325
[50]. Sekyere, J.O. (2014). Antibiotic types and handling practices in disease management among pig farms in Ashanti region, Ghana, Journal of Veterinary Medicine, 2014, pp. 531952. DOI:10.1155/2014/531952
[51]. Subha, C., Kavitha, S., Abisheka, S., Tamilarasan, K., Arulazhagan, P. & Banu, J.R. (2019). Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell, Fuel, 251, pp. 224-232. DOI:10.1016/j.fuel.2019.04.052
[52]. Sun, W., Gu, J., Wang, X., Qian, X. &Peng, H. (2019). Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure, Bioresource Technology, 274, pp. 287-295. DOI:10.1016/j.biortech.2018.09.013
[53]. Sunder, A.V., Utari, P.D., Ramasamy, S., Van Merkerk, R., Quax, W. & Pundle, A. (2017). Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa, Applied Microbiology and Biotechnology, 101, 6, pp. 2383-2395. DOI:10.1007/s00253-016-8031-5
[54]. Thipraksa, J. & Chaijak, P. (2022). Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater, Journal of Degraded and Mining Lands Management, 9, 4, pp. 3613-3619.
[55]. Thipraksa, J., Chaijak, P., Michu, P. & Lertworapreecha, M. (2022). Biodegradation and electricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell, Biocatalysis and Agricultural Biotechnology, 43, pp. 102444. DOI:10.1016/j.bcab.2022.102444
[56]. Tsai, W.T. (2018). Regulatory promotion and benefit analysis of biogas-power and biogas-digestate from anaerobic digestion in Taiwan’s livestock industry, Fermentation, 4, 3, pp. DOI:10.3390/fermentation4030057
[57]. Vogel, G., Nicolet, J., Martig, J., Tschudi, P. & Meylan, M. (2001). Pneumonia in calves: characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs, Schweizer Archiv fur Tierheilkunde, 143, 7, pp. 341-350.
[58]. Wang, S., Ma, X., Wang, Y., Du, G. &Tay, J.H. (2019). Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresource Technology, 273, pp. 350-357. DOI:10.1016/j.biortech.2018.11.023
[59. Xu, F., Ouyang, D.L., Rene, E.R., Ng, H.Y., Guo, L.L., Zhu, Y.J., Zhou, L.L., Yuan, Q., Miao, M.S., Wang, Q. & Kong, Q. (2019). Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater, Bioresource Technology, 288, pp. 121462. DOI:10.1016/j.biortech.2019.121462
[60]. Yan, R., Wang, Y., Li, J., Wang, X. & Wang, Y. (2022). Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter, Journal of Hazardous Materials, 425, pp. 127764. DOI:10.1016/j.jhazmat.2021.127764
[61]. Yousefi, V., Mohebbi-Kalhori, D. & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42, 3, pp. 1672-1690. DOI:10.1016/j
.ijhydene.2016.06.054
[62]. Zhang, D., Wang, X. Zhou, Z. (2017). Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. International Journal of Environmental Research and Public Health, 14, 12, pp. 1524. DOI:10.3390/ijerph14121524
[63]. Zhang, Y., Zhao, Y. & Zhou, M. (2019). A photosynthetic algal microbial fuel cell for treating swine wastewater, Environmental Science and Pollution Research, 26, 6182-6190. DOI:10.1007/s11356-018-3960-4
Date
2023.12.20Type
ArticleIdentifier
DOI: 10.24425/aep.2023.148683Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science