Details

Title

Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Affiliation

Matsushita, Taishi : Jönköping University, Sweden ; Sundaram, Dinesh : Jönköping University, Sweden ; Belov, Ilja : Jönköping University, Sweden ; Dioszegi, Attila : Jönköping University, Sweden

Authors

Keywords

Binder ; Casting ; Furan ; Kinetics ; Decomposition

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0.

[2] Campbell, J., Svidro, J.T. & Svidro, J. (2017). Molding and casting processes. Cast Iron Science and Technology. 1, 189-206. DOI: 10.31399/asm.hb.v01a.a0006297.

[3] Diószegi, A., Elmquist, L., Orlenius, J. & Dugic, I. (2009). Defect formation of gray iron casting. Intional Journal of Metalcasting. 3(4), 49-58, DOI: 10.1007/BF03355458.

[4] Bobrowski, A., Holtzer, M., Zymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344. DOI: 10.1515/amm-2015-0056.

[5] Grabowska, B., Żymankowska-Kumon, S., Cukrowicz, S., Kaczmarska, K., Bobrowski, A. & Tyliszczak, B. (2019). Thermoanalytical tests (TG–DTG–DSC, Py-GC/MS) of foundry binders on the example of polymer composition of poly(acrylic acid)–sodium carboxymethylcellulose. Joyrnal of Thermal Analysis and Calorimetry. 138(6), 4427-4436. DOI: 10.1007/s10973-019-08883-5.

[6] Kmita, A., Benko, A., Roczniak, A. & Holtzer, M. (2020). Evaluation of pyrolysis and combustion products from foundry binders: potential hazards in metal casting. Jornal of Thermal Analysis & Calorimetgry. 140(5), 2347-2356. DOI: 10.1007/s10973-019-09031-9.

[7] Holtzer, M., Kmita, A., Roczniak, A., Benko, A. (2018). Thermal stability of a resin binder used in moulding sand technology. 73rd World Foundry Congr. "Creative Foundry", WFC 2018 - Proc. (pp. 131-132).

[8] Wan, P., Zhou, J., Li, Y., Yin, Y., Peng, X., Ji, X., & Shen, X. (2021). Kinetic analysis of resin binder for casting in combustion decomposition process. Journal of Thermal Analysis and Calorimetry. 147, 6323-6336. DOI: 10.1007/s10973-021-10902-3.

[9] Wewerka, E.M., Walters, K.L. & Moore, R.H. (1969). Differential thermal analysis of furfuryl alcohol resin binders. Carbon. 7(1), 129-141. DOI: 10.1016/0008-6223(69)90012-8.

[10] Nastac, L., Jia, S., Nastac, M.N. & Wood, R. (2016). Numerical modeling of the gas evolution in furan binder-silica sand mold castings. International Journal of Cast Metals Research. 29(4), 194-201. DOI: 10.1080/13640461.2015.1125983.

[11] Zych, J., Mocek, J., Snopkiewicz, T. & Jamrozowicz, Ł. (2015). Thermal conductivity of moulding sand with chemical binders, attempts of its increasing. Archives of Metallurgy and Materials. 60(1), 351-357. DOI: 10.1515/amm-2015-0058.

[12] Zych, J., Mocek, J. & Kaźnica, N. (2018). Kinetics of gases emission from surface layers of sand moulds. Archives of Foundry Engineering. 18(1), 222-226. DOI: 10.24425/118841.

[13] Perondi, D., Broetto, C.C., Dettmer, A., Wenzel, B.M. & Godinho, M. (2012). Thermal decomposition of polymeric resin [(C29H 24N206)n]: Kinetic parameters and mechanisms. Polymer Degradation and Stability. 97(11), 2110-2117. DOI: 10.1016/j.polymdegradstab.2012.08.022.

[14] Jomaa, G., Goblet, P., Coquelet, C. & Morlot, V. (2015). Kinetic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric analysis. Thermochimica Acta. 612, 10-18. DOI: 10.1016/j.tca.2015.05.009.

[15] Kmita A. Knauer, W., Holtzer, M., Hodor, K., Piwowarski, G., Roczniak, A., & Górecki, K. (2019). The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Applied Thermal Engineering. 156, 263-275. DOI: 10.1016/j.applthermaleng.2019.03.093.

[16] Ozawa, T. (1976). A modified method for kinetic analysis of thermoanalytical data. Journal of Thermal Analysis. 9(3), 369-373. DOI: 10.1007/BF01909401.

[17] Coats, A.W. & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature. 201, 68-69. https://doi.org/10.1038/201068a0.

[18] Gröbler, A., & Kada, T. (1973). Kinetic studies of multi-step thermal degradations of copolymers or polymer mixtures. Journal of thermal analysis. 5, 407-414. DOI: 10.1007/BF01950231.

[19] Takamura, M. (2006). Application of Highly Wear-Resistant Carbon as a Material for Printing Types on Impact Printers. Waseda University.

[20] Fitzer, E., Schaefer, W. & Yamada, S. (1969). The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon. 7(6), 643-648. DOI: 10.1016/0008-6223(69)90518-1.

[21] Fitzer E. & Schäfer, W. (1970). The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 8(3), 353-364. DOI: 10.1016/0008-6223(70)90075-8.

[22] Shinada, Y., Ota, H. & Ueda, Y. (1985). Gaz thermiquement décomposés à partir de liants organiques. Imono. 57(1), 17-22.

[23] Freeman E.S. & Carroll, B. (1958). The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. The Journal of Physical Chemistry. 62(4), 394-397. DOI:10.1021/j150562a003.

Date

19.07.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151289
×