Details

Title

Design of Conformal Cooling of an Additively Printed Aluminium Die-Casting Mold Component

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

Accepted articles

Authors

Affiliation

Sviželová, J. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Socha, L. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Mohamed, A. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Pinta, M. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Koza, K. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Sellner, T. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Gryc, K. : Environmental Research Department, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic ; Dvořák, M. : MOTOR JIKOV Fostron a.s., Tool Shop Division, Kněžskodvorská 2277/26, 370 04 České Budějovice, Czech Republic ; Roh, M. : MOTOR JIKOV Fostron a.s., Tool Shop Division, Kněžskodvorská 2277/26, 370 04 České Budějovice, Czech Republic

Keywords

HPDC ; Conformal cooling ; Temperature field ; Numerical simulation ; Mold design

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Feng, S., Kamat, A.M. & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer. 171, 121082, 1-28. DOI: 1016/j.ijheatmasstransfer.2021.121082
  • Klobčar, D., Tušek, J. & Taljat, B. (2008). Thermal fatigue of materials for die-casting tooling. Materials Science and Engineering: A. 472 (1-2), 198-207. DOI: 10.1016/j.msea.2007.03.025.
  • Anand, A., Nagarajan, D., El Mansori, M. & Sivarupan, T. (2023). Integration of additive fabrication with high-pressure die casting for quality structural castings of aluminium alloys; optimising energy consumption. Transactions of the Indian Institute of Metals. 76(2), 347-379. DOI: 1007/s12666-022-02750-y.
  • Chen, G., Wang, J., Wang, D., Xue, L., Zeng, B. & Qin, B. (2021). Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors of AISI H13 steel. Corrosion Science. 178, 109088. DOI: 1016/j.corsci.2020.109088.
  • Bhaskar, M., Anand, G., Nalluswamy, T. & Suresh, P. (2022). Die life in aluminium high-pressure die casting industries. Journal of The Institution of Engineers (India): Series D. 103(1), 117-123. DOI: 1007/s40033-021-00317-7.
  • Andronov, V., Beránek, L., Zajíc, J., Šotka, P. & Bock, M. (2023). Case study of large three-dimensional-printed slider with conformal cooling for high-pressure die casting. 3D Printing and Additive Manufacturing. 10(4), 587-608. DOI: 1089/3dp.2022.0225.
  • Jarfors, A.E.W., Sevastopol, R., Seshendra, K., Zhang, Q., Steggo, J. & Stolt, R. (2021). On the use of conformal cooling in high-pressure die-casting and semisolid casting. Technologies. 9(2), 39, 1-16. DOI: 3390/technologies9020039.
  • Fiorentini, F., Curcio, P., Armentani, E., Rosso, C. & Baldissera, P. (2019). Study of two alternative cooling systems of a mold insert used in die casting process of light alloy components. Procedia Structural Integrity. 24, 569-582. DOI: 1016/j.prostr.2020.02.050.
  • Stolt, R., Pour, M.A. & Siafakas, D. (2021). Making additively manufactured cores with conformal tooling directly on a die-base. Procedia Manufacturing. 55, 200-204. https://doi.org/10.1016/j.promfg.2021.10.028.
  • Barreiro, P., Armutcu, G., Pfrimmer, S. & Hermes, J. (2022). Quality improvement of an aluminum gearbox housing by implementing additive manufacturing. Forschung im Ingenieurwesen. 86(3), 605-616. DOI: 1007/s10010-021-00541-3.
  • Shinde, M.S. & Ashtankar, K.M. (2017). Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering. 9(5), 1-14. DOI: 1177/1687814017699764.
  • Armillotta, A., Baraggi, R. & Fasoli, S. (2014). SLM tooling for die casting with conformal cooling channels. The International Journal of Advanced Manufacturing Technology. 71(1-4), 573-583. DOI: 10.1007/s00170-013-5523-7.
  • Zeng, T., Abo-Serie, E., Henry, M. & Jewkes, J. (2023). Cooling channel free surface optimisation for additively manufactured casting tools. The International Journal of Advanced Manufacturing Technology. 127(3-4), 1293-1315. DOI: 1007/s00170-023-11402-4.
  • Karakoc, C., Dizdar, K. C. & Dispinar, D. (2022). Investigation of effect of conformal cooling inserts in high-pressure die casting of AlSi9Cu3. The International Journal of Advanced Manufacturing Technology. 121(11-12), 7311-7323. DOI: 1007/s00170-022-09808-7.
  • Anglada, E., Meléndez, A., Vicario, I., Arratibel, E. & Aguillo, I. (2015). Adjustment of a high pressure die casting simulation model against experimental data. Procedia Engineering. 135, 966-973. DOI: 1016/j.proeng.2015.12.584.
  • Norwood, A., Dickens, P., Soar, R., Harris, R., Gibbons, G. & Hansell, R. (2004). Analysis of cooling channels performance. International Journal of Computer Integrated Manufacturing. 17(8), 669-678. DOI: 1080/0951192042000237528.
  • Piekło, J., Burbelko, A. & Garbacz-Klempka, A. (2022). Shape-dependent strength of Al Si9Cu3FeZn die-cast alloy in impact zone of conformal cooling core. Materials. 15(15), 5133, 1-21. DOI: 3390/ma15155133.
  • ESI Group. (2024, April). ProCAST. Retrieved April 05, 2024, from https://www.esi-group.com/products/procast.
  • ESI Group. (2021, August). ProCAST 2021.0 – User Guide. Retrieved April 05, 2024, from https://myesi.esi-group.com/downloads/software-documentation/procast-2021.0-user-guide-visual-cast-procast-rev-b-online-online-online-online.
  • Ingham, D.B., Ma, L. (2005). Fundamental equations for CFD in river flow simulations. In P.D. Bates, S.N. Lane, R.I. Ferguson (Eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics (pp. 19-50). New Jersey: Wiley.
  • Alhendal, Y., Turan, A. (2012). Volume-of-fluid (VOF). In R. Petrova (Eds.), Finite Volume Method - Powerful Means of Engineering Designs (pp. 215-234). Rijeka: InTech.
  • Yeoh, G.H., Tu, J. (2019). Computational Techniques for Multiphase Flows. Cambridge: Elsevier. Butterworth-Heinemann.
  • Ranade, V.V. (2002) Computational Flow Modeling for Chemical Reactor Engineering. Cambridge: Elsevier.
  • (2022, October). PFO Series. Retrieved September 6th, 2024, from https://www.colosiopresse.it/docs/PFO_Colosio_Datasheet_EN.pdf
  • (2018, May). Uddeholm Dievar. Retrieved September 3rd, 2024, from https://www.uddeholm.com/app/uploads/sites/216/productdb/api/tech_uddeholm-dievar_en.pdf
  • ČSN EN 1706+A1. (2022). Aluminium and aluminium alloys – Castings – Chemical composition and mechanical properties. Prague: Czech Standardization Agency

Date

23.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151306
×