Szczegóły

Tytuł artykułu

Effect of Titanium on Structural, Mechanical and Functional Properties of Thin-Walled CGI Castings

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2025

Wolumin

vol. 25

Numer

No 4

Autorzy

Afiliacje

Kawalec, M. : AGH University of Science and Technology in Kraków, Faculty of Foundry, Department of Alloy and Composite Engineering, Poland. ; Górny, M. : AGH University of Science and Technology in Kraków, Faculty of Foundry, Department of Alloy and Composite Engineering, Poland. ; Kozana, J. : AGH University of Science and Technology in Kraków, Faculty of Foundry, Department of Molding Materials, Mold Technology, and Non-Ferrous Metal Foundry, Poland. ; Marosz, J. : AGH University of Science and Technology in Kraków, Faculty of Foundry, Department of Alloy and Composite Engineering, Poland.

Słowa kluczowe

Innovative foundry technologies and materials ; Metallography ; Compacted graphite ; Titanium ; Thin wall castings

Wydział PAN

Nauki Techniczne

Zakres

155-161

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

  • Dawson, S., Hollinger, I., Robbins, M., Daeth, J., Reuter, U. & Schultz, H. (2001). The effect of metallurgical variables on the machinability of compacted graphite iron. SAE Transactions. 110(5), 334-352.

  • Behera, A., Mishra, S.C. (2012). New solution for property improvement of automobile parts. Proceedings of Advances in Simulation & Optimization Techniques in Mechanical Engineering (NASOME-2012), 1-5.

  • Guesser, W., Schroeder, T. & Dawson, S. (2001). Production Experience with compacted graphite iron automotive components. AFS Transactions. 109, 01-071, 1-11.

  • Qiu, H. & Chen, Z. (2007). The forty years of vermicular graphite cast iron development in China (Part III). China Foundry. 4, 261-269.

  • Liu, J. & Ding, N.X. (1985). Effect of type and amount of treatment alloy on compacted graphite produced by the Flotret process. AFS Transactions. 93, 675-688.

  • Dawson, S. & Schroeder, T. (2004). Practical applications for compacted graphite iron. AFS Transactions. 47(5), 1-9.

  • Charoenvilaisiri, S., Stefanescu, D.M., Ruxanda, R. & Piwonka, T.S. (2002). Thin wall compacted graphite iron castings. AFS Transactions. 2, 176, 1113-1130.

  • Sofroni, L., Riposan, I., Chira, I. (1974). Some considerations on the crystallization features of cast irons with intermediate-shaped graphite (vermicular type). In Proceedings of the 2nd International Symposium on the Metallurgy of Cast Iron, Geneva, 1976 (pp. 179-196).

  • Podrzucki, C., Wojtysiak, A. (1988). Unalloyed ductile iron. Part II cast iron with vermicular graphite. Cracow: AGH Ed..

  • Górny, M. (2010). Structure formation of ultra-thin wall ductile iron castings. Cracow: Akapit Ed.

  • Zhou, J. (2011). Vermicular graphite cast iron (I). China Foundry. 8(1), 154-164.

  • Li, K., Zhang, X., Wang, Y. & Liu, J. (2024). Influence of cooling rate on microstructure and mechanical properties of thin-walled compacted graphite iron. Journal of Materials Science & Technology. 98, 200-208.

  • Kowalski, M., Nowak, P. & Wójcik, A. (2024). Solidification behavior of thin-walled compacted graphite iron castings. Archives of Metallurgy and Materials. 69(2), 451-458.

  • Riposan, I., Chisamera, M., Kelley, R., Barstow, M. & Naro, R.L. (2003). Magnesium-sulfur relationships in ductile and compacted graphite cast irons as influenced by late sulfur additions. AFS Transactions. 111(03-093), 869-883.

  • Shy, Y., Hsu, C., Lee, S. & Hou, C. (2000). Effects of titanium addition and section size on microstructure and mechanical properties of compacted graphite cast iron. Materials Science and Engineering A. 278(1-2), 54-60. https://doi.org/10.1016/S0921-5093(99)00599-7.

  • Chen, Z., Li, X. & Wang, B. (2023). Role of titanium in controlling graphite morphology in compacted graphite iron. International Journal of Cast Metals Research. 36(3), 190-198.

  • Nowak, A. & Olejnik, B. (2024). Thermal conductivity of compacted graphite iron: recent advances and future perspectives. Archives of Foundry Engineering. 24(1), 35-42.

  • Zielinski, J. & Kowalczyk, M. (2024). Mechanical properties of compacted graphite iron under different cooling conditions. Archives of Foundry Engineering. 24(2), 112-120.

  • Wróbel, P. & Szymański, A. (2024). Control of graphite morphology in compacted graphite iron: a review of recent developments. Metallurgy and Foundry Engineering. 50(1), 5-14.

  • Nowak, K.J. & Wiśniewski, M. (2024). Influence of inoculation on microstructure and properties of thin-walled iron castings. Metallurgy and Foundry Engineering. 50(2), 121-130.

  • Zeng, D., Zhang, Y., Liu, J., He, H. & Hong, X. (2008). Characterization of titanium–containing compounds in gray iron. Tsinghua Science and Technology. 13(2), 127-131. https://doi.org/10.1016/S1007-0214(08)70022-1.

  • Myszka, D., Karwiński, A., Leśniewski, W. & Wieliczko, P. (2007). Influence of the type of ceramic moulding materials on the top layer of titanium precision castings. Archives of Foundry Engineering. 7(1), 153-156. ISSN (1897-3310).

  • Górny, M., Kawalec, M., Sikora, G. & Lopez, H. (2014). Effect of cooling rate and titanium additions on microstructure of thin-walled compacted graphite iron castings. ISIJ International. 54(10), 2288-2293. https://doi.org/10.2355/isijinternational.54.2288.

Data

30.12.2025

Typ

Article

Identyfikator

DOI: 10.24425/afe.2025.157613 ; eISSN 2299-2944
×