Details

Title

Interactive evolutionary multiobjective optimization driven by robust ordinal regression

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2010

Volume

58

Issue

No 3

Authors

Divisions of PAS

Nauki Techniczne

Coverage

347-358

Date

2010

Identifier

DOI: 10.2478/v10175-010-0033-3 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010; 58; No 3; 347-358

References

C. Coello Coello (2002), Evolutionary Algorithms for Solving Multi-Objective Problems, doi.org/10.1007/978-1-4757-5184-0 ; Deb K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms. ; Miettinen K. (1999), Nonlinear Multiobjective Optimization. ; Steuer R. (1986), Multiple Criteria Optimization: Theory, Computation and Application. ; Vincke Ph. (1992), Multicriteria Decision Aid. ; Branke J. (2008), Multiobjective Optimization: Interactive and Evolutionary Approaches, doi.org/10.1007/978-3-540-88908-3 ; Greco S. (2010), Trends in Multiple Criteria Decision Analysis, 241. ; Greco S. (2008), Ordinal regression revisited: multiple criteria ranking with a set of additive value functions, Eur. J. Operational Research, 191, 2, 415, doi.org/10.1016/j.ejor.2007.08.013 ; Figueira J. (2009), Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method, Eur. J. Operational Research, 195, 2, 460. ; Deb K. (2002), A fast and elitist multi-objective genetic algorithm, NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 2, 182. ; Branke J. (2009), Evolutionary Multi-Criterion Optimization (EMO'09), 5467, 554. ; Fonseca C. (1993), Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization, null, 1, 416. ; Deb K. (2006), Reference point based multi-objective optimization using evolutionary algorithms, Int. J. Computational Intelligence Research, 2, 3, 273. ; Thiele L. (2009), A preference-based interactive evolutionary algorithm for multiobjective optimization, Evolutionary Computation Journal, 17, 3, 411. ; Branke J. (2001), Guidance in evolutionary multi-objective optimization, Advances in Engineering Software, 32, 499. ; Deb K. (2010), I-MODE: an interactive multiobjective optimization and decision-making using evolutionary methods, Applied Soft Computing, 10, 496, doi.org/10.1016/j.asoc.2009.08.019 ; Jaszkiewicz A. (2008), Multiobjective Optimization - Interactive and Evolutionary Approaches, LNCS 5252, 179, doi.org/10.1007/978-3-540-88908-3_7 ; Branke J. (2008), Multiobjective Optimization - Interactive and Evolutionary Approaches, LNCS 5252, 157, doi.org/10.1007/978-3-540-88908-3_6 ; Greenwood G. (1997), Foundations of Genetic Algorithms, 437. ; Phelps S. (2003), An interactive evolutionary meta-heuristic for multiobjective combinatorial optimization, Management Science, 49, 12, 1726. ; Jaszkiewicz A. (2007), Interactive multiobjective optimization with the Pareto memetic algorithm, Foundations of Computing and Decision Sciences, 32, 1, 15. ; Roy B. (1993), Aide Multicritère à la Décision: Méthodes et Cas. ; March J. (1978), Bounded rationality, ambiguity and the engineering of choice, Bell J. Economics, 9, 587. ; Srinivasan V. (1973), Estimating the weights for multiple attributes in a composite criterion using pairwise judgments, Psychometrika, 38, 473. ; Pekelman D. (1974), Mathematical programming models for the determination of attribute weights, Management Science, 20, 1217. ; Jacquet-Lagrèze E. (1982), Assessing a set of additive utility functions for multicriteria decision making: the UTA method, Eur. J. Operational Research, 10, 151. ; Siskos Y. (2005), Multiple Criteria Decision Analysis: State-of-the-Art Surveys, 297. ; Kiss L. (1994), ELECCALC - an interactive software for modelling the decision maker's preferences, Decision Support Systems, 12, 757, doi.org/10.1016/0167-9236(94)90049-3 ; Mousseau V. (1998), Inferring an ELECTRE TRI model from assignment examples, J. Global Optimization, 12, 157. ; Greco S. (2001), Rough sets theory for multicriteria decision analysis, Eur. J. Operational Research, 129, 1, 1. ; Figueira J. (2008), Identifying the "most representative" value function among all compatible value functions in the GRIP method, null, 1. ; Zitzler E. (2000), Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary Computation Journal, 8, 2, 125, doi.org/10.1162/106365600568202
×