Details Details PDF BIBTEX RIS Title Comparison of transfer functions using estimated rational functions to detect winding mechanical faults in transformers Journal title Archives of Electrical Engineering Yearbook 2012 Volume vol. 61 Issue No 1 March Authors Bigdeli, Mehdi ; Vakilian, Mehdi ; Rahimpour, Ebrahim Keywords transformer ; transfer function ; fault detection ; axial displacement ; rational function Divisions of PAS Nauki Techniczne Coverage 85-99 Publisher Polish Academy of Sciences Date 2012 Type Artykuły / Articles Identifier DOI: 10.2478/v10171-012-0008-0 ; ISSN: 1427-4221 ; eISSN: 2300-2506 Source Archives of Electrical Engineering; 2012; vol. 61; No 1 March; 85-99 References Singh A. (2009), A Comparison of Trans-Admittance and Characteristic Impedance as Metrics for Detection of Winding Displacements in Power Transformers, Electric Power Systems Research, Elsevier, 79, 871, doi.org/10.1016/j.epsr.2008.11.008 ; Gustavsen B. (1999), Rational Approximation of Frequency Domain Responses by Vector Fitting, IEEE Transactions on Power Delivery, 14, 1052, doi.org/10.1109/61.772353 ; Gustavsen B. (2004), Wide Band Modeling of Power Transformers, IEEE Transactions on Power Delivery, 19, 414, doi.org/10.1109/TPWRD.2003.820197 ; Karimifard P. (2008), Determination of Axial Displacement Extent Based on Transformer Winding Transfer Function Estimation using Vector-Fitting Method, European Transactions on Electrical Power, 18, 423, doi.org/10.1002/etep.194 ; Karimifard P. (2009), Localization of Winding Radial Deformation and Determination of Deformation Extent Using Vector Fitting-Based Estimated Transfer Function, European Transactions on Electrical Power, 19, 749, doi.org/10.1002/etep.253 ; Ragavan K. (2008), Construction of Physically Realizable Driving-Point Function From Measured Frequency Response Data on a Model Winding, IEEE Transactions on Power Delivery, 23, 760, doi.org/10.1109/TPWRD.2008.915815 ; Ragavan K. (2007), Localization of Changes in a Model Winding Based on Terminal Measurements: Experimental Study, IEEE Transactions on Power Delivery, 22, 1557, doi.org/10.1109/TPWRD.2006.886789 ; Nirgude P. (2008), Application of Numerical Evaluation Techniques for Interpreting Frequency Response Measurements in Power Transformers, IET Science, Measurements and Technology, 2, 275, doi.org/10.1049/iet-smt:20070072 ; Leibfried T. (1999), Monitoring of Power Transformers using the Transfer Function Method, IEEE Transactions on Power Delivery, 14, 1333, doi.org/10.1109/61.796226 ; Christian J. (2004), Procedures for Detecting Winding Displacements in Power Transformers by the Transfer Function Methods, IEEE Transactions on Power Delivery, 19, 214, doi.org/10.1109/TPWRD.2003.820221 ; Ryder S. (2003), Diagnosing Transformer Faults using Frequency Response Analysis, IEEE Electrical Insulation Magazine, 19, 16, doi.org/10.1109/MEI.2003.1192032 ; Secue J. (2008), Sweep Frequency Response Analysis (SFRA) for the Assessment of Winding Displacements and Deformation in Power Transformers, Electric Power Systems Research, Elsevier, 78, 1119, doi.org/10.1016/j.epsr.2007.08.005 ; Bigdeli M. (2011), A New Method for Detection and Evaluation of Winding Mechanical Faults in Transformer through Transfer Function Measurements, Advances in Electrical and Computer Engineering, 11, 23, doi.org/10.4316/aece.2011.02004 ; Karimifard P. (2008), A New Algorithm for Localization of Radial Deformation and Determination of Deformation Extent in Transformer Windings, Electric Power Systems Research, Elsevier, 78, 1701, doi.org/10.1016/j.epsr.2008.02.017 ; Rahimpour E. (2003), Transfer Function Method to Diagnose Axial Displacement and Radial Deformation of Transformer Winding, IEEE Transactions on Power Delivery, 18, 493, doi.org/10.1109/TPWRD.2003.809692