Details

Title

Distillation profiles in ternary heterogeneous mixtures with distillation boundaries: staged columns

Journal title

Chemical and Process Engineering

Yearbook

2012

Issue

No 2 June

Authors

Keywords

distillation ; distillation profiles ; distillation boundaries ; staged column ; heterogeneous mixtures

Divisions of PAS

Nauki Techniczne

Coverage

207-219

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2012

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-012-0018-x ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2012; No 2 June; 207-219

References

Antoine C. (1888), Vapor pressures: new relationship between vapor pressure and temperature, Records of meetings of the Academy of Sciences, 107, 681. ; Baur R. (2005), Influence of mass transfer in distillation: feasibility and design, AIChE J, 51, 854, doi.org/10.1002/aic.10328 ; Bossen B. (1993), Simulation, design, and analysis of azeotropic distillation operations, Ind. Eng. Chem. Res, 32, 620, doi.org/10.1021/ie00016a008 ; Brüggemann S. (2011a), Conceptual design of distillation processes for mixtures with distillation boundaries. II. Optimization of recycle policies, AIChE J, 54, 1540, doi.org/10.1002/aic.12377 ; Brüggemann S. (2011b), Conceptual design of distillation processes for mixtures with distillation boundaries: I. Computational assessment of split feasibility, AIChE J, 57, 1526, doi.org/10.1002/aic.12378 ; Castillo F. (1998), Influence of multicomponent mass transfer on homogeneous azeotropic distillation, Chem. Eng. Sci, 53, 963, doi.org/10.1016/s0009-2509(97)00418-1 ; Doherty M. (1985), Design and synthesis of homogeneous azeotropic distillations. 3. The sequencing of columns for azeotropic and extractive distillations, Ind. Eng. Chem. Fundam, 24, 474, doi.org/10.1021/i100020a012 ; Fidkowski Z. (1993), Feasibility of separations for distillation of nonideal ternary mixtures, AIChE J, 39, 1303, doi.org/10.1002/aic.690390806 ; Gmehling J. (2004), Azeotropic data, 3. ; Gmehling J. (1977), Vapor-liquid equilibrium data collection. ; Jobson M. (1995), Attainable products for the vapour-liquid separation of homogeneous ternary mixtures, Chem. Eng. J. Biochem. Eng. J, 59, 51, doi.org/10.1016/0923-0467(95)03002-6 ; Kiva V. (2003), Azeotropic phase equilibrium diagrams: A survey, Chem. Eng. Sci, 58, 1903, doi.org/10.1016/s0009-2509(03)00018-6 ; Królikowski A. (2007), Properties of distillation boundaries in ternary heterogeneous mixtures, null, 87. ; Królikowski A. (2011), Distillation profiles in ternary heterogeneous mixtures with distillation boundaries, Chem. Eng. Res. Des, 89, 879, doi.org/10.1016/j.cherd.2010.11.016 ; Królikowski L.J., 1999. Selection of separation conditions of heteroazeotropes, In: SPR Reports, <i>Report SPR 8/99.</i> Institute of Chemical Engineering and Heating Equipment, Wrocław University of Technology, Poland, p. 22 (in Polish). ; Królikowski L. (2001), Distillation boundaries created by the ternary azeotropes, Chem. Proc. Eng, 22, 807. ; Królikowski L. (2002), Distillation regions for nonideal ternary mixtures, null. ; Królikowski L. (2003), Determination of distillation regions for ternary azeotropic mixtures, null, 34. ; Królikowski L. (2006), Determination of distillation regions for non-ideal ternary mixtures, AIChE J, 52, 532, doi.org/10.1002/aic.10663 ; Levy S. (1985), Design and synthesis of homogeneous azeotropic distillations. 2. Minimum reflux calculations for nonideal and azeotropic columns, Ind. Eng. Chem. Fundam, 24, 463, doi.org/10.1021/i100020a011 ; Lucia A. (2006), The geometry of separation boundaries: I. Basic theory and numerical support, AIChE J, 52, 582, doi.org/10.1002/aic.10668 ; Lucia A. (2007), The geometry of separation boundaries. II. Mathematical formalism, AIChE J, 53, 1779, doi.org/10.1002/aic.11204 ; Mortaheb H. (2004), Simulation and optimization of heterogeneous azeotropic distillation process with a rate-based model, Chem. Eng. Process, 43, 317, doi.org/10.1016/s0255-2701(03)00131-4 ; Petlyuk F. (1965), Thermodynamically optimal method for separating multicomponent mixtures, Int. Chem. Eng, 5, 555. ; Renon H. (1968), Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J, 14, 135, doi.org/10.1002/aic.690140124 ; Renon H. (1969), Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures, Ind. Eng. Chem. Process Des. Dev, 8, 413, doi.org/10.1021/i260031a019 ; Rév E. (1992), Crossing of valleys, ridges, and simple boundaries by distillation in homogeneous ternary mixtures, Ind. Eng. Chem. Res, 31, 893, doi.org/10.1021/ie00003a035 ; Safrit B. (1997), Algorithm for generating the distillation regions for azeotropic multicomponent mixtures, Ind. Eng. Chem. Res, 36, 1827, doi.org/10.1021/ie960344r ; Serafimov L. (1970), The azeotropic rule and the classification of multicomponent mixtures VII. Diagrams for ternary mixtures, J. Phys. Chem. (USSR), 44, 567. ; Shampine L. (1997), The MATLAB ODE suite, SIAM J. Sci. Comput, 18, 1, doi.org/10.1137/S1064827594276424 ; Springer P. (2002), The need for using rigorous rate-based models for simulations of ternary azeotropic distillation, Comput. Chem. Eng, 26, 1265, doi.org/10.1016/s0098-1354(02)00039-x ; Taylor R. (2004), Influence of mass transfer in distillation: residue curves and total reflux, AIChE J, 50, 3134, doi.org/10.1002/aic.10278 ; Teixeira J. (2009), Moving boundary in non-equilibrium simple batch distillation in non-ideal systems, Chem. Eng. Proc.: Process Intensification, 48, 1574, doi.org/10.1016/j.cep.2009.10.013 ; D. Van Dongen (1984), On the dynamics of distillation processes-V: the topology of the boiling temperature surface and its relation to azeotropic distillation, Chem. Eng. Sci, 39, 883, doi.org/10.1016/0009-2509(84)85057-5 ; Wahnschafft O. (1992), The product composition regions of single-feed azeotropic distillation columns, Ind. Eng. Chem. Res, 31, 2345, doi.org/10.1021/ie00010a014

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×