Medical sciences

Folia Medica Cracoviensia

Content

Folia Medica Cracoviensia | 2020 | Vol. 60 | No 4 |

Download PDF Download RIS Download Bibtex

Abstract

B a c k g r o u n d: The aim of this study was to determine the effect of sesquiterpene lactone parthenolide on the cytotoxic and pro-oxidative effects of etoposide in HL-60 cells.
M e t h o d s: Cytotoxic effects were determined by incubation of HL-60 cells with various concentrations of examined compounds and combinations thereof, which were then stained with propidium iodide and analyzed using a flow cytometer. To determine the role of oxidative stress in the action of the compounds, co-incubation with N-acetyl-l-cysteine (NAC) and parthenolide and/or etoposide was used and the level of reduced glutathione (GSH) was detected.
R e s u l t s: Parthenolide significantly enhanced the cytotoxic and pro-apoptotic effects of etoposide. However, in most cases of the combinations of parthenolide and etoposide, their effect was antagonistic, as confirmed by an analysis using the CalcuSyn program. The examined compounds significantly reduced the level of GSH in HL-60 cells. Combination of etoposide at a concentration of 1.2 μM and parthenolide also significantly reduced GSH level. However, in the case of a combination of etoposide at a concentration of 2.5 μM with parthenolide, a significant increase in the level of GSH was obtained compared to compounds acting alone. This last observation seems to confirm the antagonism between the compounds tested.
C o n c l u s i o n s: Parthenolide did not limit the cytotoxic effect of etoposide in HL-60 cells even in the case of antagonistic interaction. If parthenolide does increase GSH levels in combination with etoposide in the normal hematopoietic cells, it could protect them against the pro-oxidative effects of this anti-cancer drug.
Go to article

Bibliography

1. Bell J.A., Galaznik A., Huelin R., Stokes M., Guo Y., Fram R.J., Faller D.V.: Effectiveness and safety of therapeutic regimens for elderly patients with acute myeloid leukemia: a systematic literature review. Clin Lymphoma Myeloma Leuk. 2018; 18: e303–e314.
2. Hackl H., Astanina K., Wieser R.: Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol. 2017; 20: 51.
3. Foran J.M.: Do cytogenetics affect the post-remission strategy for older patients with AML in CR1? Best Pract Res Clin Haematol. 2017; 30: 306–311.
4. Yunos N.M., Beale P., Yu J.Q., Huq F.: Synergism from the combination of oxaliplatin with selected phytochemicals in human ovarian cancer cel lines. Anticancer Res. 2011; 31: 4283–4290.
5. Shah K., Mirza S., Desai U., Jain N., Rawal R.: Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anticancer Agents Med Chem. 2016; 16: 128–135.
6. Banudevi S., Swaminathan S., Maheswari K.U.: Pleiotropic role of dietary phytochemicals in cancer: emerging perspectives for combinational therapy. Nutr Cancer. 2015; 67: 1021–1048.
7. Pei S., Minhajuddin M., D’Alessandro A., Nemkov T., Stevens B.M., Adane B., Khan N., Hagen F.K., Yadav V.K., De S., Ashton J.M., Hansen K.C., Gutman J.A., Pollyea D.A., Crooks P.A., Smith C., Jordan C.T.: Rational design of a parthenolide-based drug regimen that selectively eradicates acute myelogenous leukemia stem cells. J Biol Chem. 2016; 291: 21984–22000.
8. Guzman M.L., Rossi R.M., Karnischky L., Li X., Peterson D.R., Howard D.S., Jordan C.T.: The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005; 105: 4163–4169.
9. Papiez M.A., Baran J., Bukowska-Straková K., Wiczkowski W.: Antileukemic action of (-)-epicatechin in the spleen of rats with acute myeloid leukemia. Food Chem Toxicol. 2010; 48: 3391–3397.
10. Papież M.A.: The influence of curcumin and (-)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem Toxicol. 2013; 36: 93–101.
11. Siveen K.S., Uddin S., Mohammad R.M.: Targeting acute myeloid leukemia stem cel signaling by natural products. Mol Cancer. 2017; 16: 1–12.
12. Curry E.A., Murry D.J., Yoder C., Fife K., Armstrong V., Nakshatri H., O’Connell M., Sweeney C.J.: Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004; 22: 299–305.
13. Knight D.W.: Feverfew: chemistry and biological activity. Nat Prod Rep. 1995; 12: 271–276.
14. Ordóñez P.E., Sharma K.K., Bystrom L.M., Alas M.A., Enriquez R.G., Malagón O., Jones D.E., Guzman M.L., Compadre C.M.: Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells. J Nat Prod. 2016; 79: 691–696.
15. Merfort I.: Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets. 2011; 12: 1560–1573.
16. Li C., Jones A.X., Lei X.: Natural product reports synthesis and mode of action of oligomeric sesquiterpene lactones. Nat Prod Rep. 2015; 1–10.
17. Pei S., Minhajuddin M., Callahan K.P., Balys M., Ashton J.M., Neering S.J., Lagadinou E.D., Corbett C., Ye H., Liesveld J.L., O’Dwyer K.M., Li Z., Shi L., Greninger P., Settleman J., Benes C., Hagen F.K., Munger J., Crooks P.A., Becker M.W., Jordan C.T.: Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013; 288: 33542–33558.
18. Klein K., Kaspers G., Harrison C.J., Beverloo H.B., Reedijk A., Bongers M., Cloos J., Pession A., Reinhardt D., Zimmerman M., Creutzig U., Dworzak M., Alonzo T., Johnston D., Hirsch B., Zapotocky M., De Moerloose B., Fynn A., Lee V., Taga T., Tawa A., Auvrignon A., Zeller B., Forestier E., Salgado C., Balwierz W., Popa A., Rubnitz J., Raimondi S., Gibson B.: Clinical impact of additional cytogenetic aberrations, ckit and ras mutations, and treatment elements in pediatric t(8;21)-aml: results from an international retrospective study by the international Berlin–Frankfurt–Münster study group. J Clin Oncol. 2015; 20: 4247–4258.
19. Burnett A.K.: New induction and postinduction strategies in acute myeloid leukemia. Curr Opin Hematol. 2012; 19: 76–81.
20. Kagan V.E., Yalowich J.C., Borisenko G.G., Tyurina Y.Y., Tyurin V.A., Thampatty P., Fabisiak J.P.: Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach. Mol Pharmacol. 1999; 56: 494–506.
21. Patel N.M., Nozaki S., Shortle N.H., Bhat-Nakshatri P., Newton T.R., Rice S., Gelfanov V., Boswell S.H., Goulet R.J., Sledge G.W., Nakshatri H.: Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by Ikappa-B alpha super-repressor and parthenolide. Oncogene. 2000; 19: 4159–4169.
22. deGraffenried L.A., Chandrasekar B., Friedrichs W.E., Donzis E., Silva J., Hidalgo M., Freeman J.W., Weiss G.R.: NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 2004; 15: 885–890.
23. Tietze F.: Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Ann Biochem. 1969; 27: 502–522.
24. Papież M.A., Krzyściak W., Szade K., Bukowska-Straková K., Kozakowska M., Hajduk K., Bystrowska B., Dulak J., Jozkowicz A.: Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Des Devel Ther. 2016; 10: 557–570.
25. Wurthwein G., Krumpelmann S., Tillmann B., Real E., Schulze-Westhoff P., Jurgens H., Boos J.: Population pharmacokinetic approach to compare oral and i.v. administration of etoposide. Anticancer Drugs. 1999; 10: 807–814.
26. Kim Y.R., Eom J.I., Kim S.J., Jeung H.K., Cheong J.W., Kim J.S., Min Y.H.: Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. JPET. 2010; 335: 389–400.
27. Vlasova I.I., Feng W., Goff J.P., Giorgianni A., Do D., Gollin S.M., Lewis D.W., Kagan V.E., Yalowich J.C.: Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells. Mol Pharmacol. 2011; 79: 448–479.
28. Seo K.H., Ko H.M., Han A., Kim H.A., Choi J.H., Park S.J., Kim K.J., Lee H.K., Im S.Y.: Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kb activation. Cancer Res. 2006; 66: 4681–4686.
29. Teufelhofer O., Weiss R.M., Parzefall W., Schulte-Hermann R., Micksche M., Berger W., Elbling L.: Promyelocytic HL60 cells express NADPH oxidase and are exellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide. Toxicol Sci. 2003; 76: 376–383.
30. Skalska J., Brookes P.S., Nadtochiy S.M., Hilchey S.P., Jordan C.T., Guzman M.L., Maggirwar S.B., Briehl M.M., Bernstein S.H.: Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. PLoS One. 2009; 2: e8115.
Go to article

Authors and Affiliations

Monika A. Papież
1
Oliwia Siodłak
1
Wirginia Krzyściak
2

  1. Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Medical Diagnostic, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A i m s: Gestational diabetes mellitus (GDM) is an emerging worldwide problem. Changes in clinical characteristics of women affected by GDM in a long-term perspective are still not properly investigated. We aimed to examine such changes over a decade in a retrospective single-center analysis.
M e t h o d s: The medical documentation from Department of Metabolic Diseases, Krakow, Poland was analyzed. We included 633 women consecutively diagnosed with GDM in one of three time intervals: 2007–2008 (N = 157), 2012–2013 (N = 272), 2016–2017 (N = 234). Statistical analyses were performed.
R e s u l t s: Comparison of the three groups identified differences in the mean age of women at the GDM diagnosis (30.7 ± 5.0 years vs. 31.2 ± 4.7 vs. 32.5 ± 4.7, respectively, starting from the earliest 2007–2008 group), pregnancy week at GDM diagnosis (28.0 ± 5.3 wks. vs. 25.9 ± 4.9 vs. 23.4 ± 6.8), the proportion of women diagnosed before the 24th week of pregnancy (12.8% vs. 16.5% vs. 31.3%), and gestational weight gain (12.4 ± 5.0 kg vs. 10.4 ± 5.2 vs. 10.0 ± 5.7); (p = 0.001 or less for all comparisons). We also found differences for glucose values on fasting and at 2 hours with the highest (0 min) and lowest level (120 min) in the 2016–2017, respectively. Finally, a borderline difference for the weight, but not for BMI, was found (64.1 ± 14.1 kg vs. 66.2 ± 13.1 vs. 67.8 ± 15.6; p = 0.04). Differences were also identified in the post hoc analysis between cohorts.
C o n c l u s i o n: This retrospective analysis illustrates changes in characteristics of women with GDM occurring over the period of decade in Poland. They likely result from both epidemiological trends and modifications of the WHO criteria for the GDM diagnosis.
Go to article

Bibliography

1. McIntyre H.D., Catalano P., Zhang C., Desoye G., Mathiesen E.R., Damm P.: Gestational diabetes mellitus. Nat Rev Dis Primers. 2019; 5: 47. JAMA 1967; 200: 1129–1131.
2. Lowe L.P., Metzger B.E., Dyer A.R., et al.: Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes. Diabetes Care. 2012; 35: 574–580.
3. Gortazar L., Flores-Le Roux J.A., Benaiges D., et al.: Trends in prevalence of gestational diabetes and perinatal outcomes in Catalonia, Spain, 2006 to 2015: the Diagestcat Study. Diabetes Metab Res Rev. 2019; 35: e3151.
4. Cade T.J., Polyakov A., Brennecke S.P.: Implications of the introduction of new criteria for the diagnosis of gestational diabetes: a health outcome and cost of care analysis. BMJ Open. 2019; 9: e023293.
5. Mack L.R., Tomich P.G.: Gestational Diabetes: Diagnosis, Classification and Clinical Care. Obstet. Gynecol. Clin. North Am. 2017; 44: 207–217.
6. Egan A.M., Vellinga A., Harreiter J., et al.: Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia. 2017; 60: 1913– 1921.
7. Lean S.C., Derricott H., Jones R.L., et al.: Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS One. 2017; 12: e0186287.
8. Chiefari E., Arcidiacono B., Foti D., et al.: Gestational diabetes mellitus: an updated overview. J Endocrinol Invest. 2017; 40:.899–909.
9. Skupień J., Cyganek K., Małecki M.T.: Diabetic pregnancy: an overview of current guidelines and clinical practice. Curr Opin Obstet Gynecol. 2014; 26: 431–417.
10. Behboudi-Gandevani S., Amiri M., Bidhendi Yarandi R., et al.: The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019; 11: 11.
11. HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., et al.: Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008; 358: 1991–2002.
12. World Health Organization: Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization guideline. Diabetes Res Clin Pract. 2014; 103: 341–363.
13. 2020 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clinical Diabetology, supplement A, 2014.
14. Rybińska A.: Motherhood after the age of 35 in Poland. Studia Demogr. 2014; 1: 7–15.
15. Molina-García L., Hidalgo-Ruiz M., Cocera-Ruíz E.M., et al.: The delay of motherhood: Reasons, determinants, time used to achieve pregnancy, and maternal anxiety level. PLoS One. 2019; 14: e0227063.
16. Matthews T.J., Hamilton B.E.: First births to older women continue to rise. NCHS Data Brief. 2014; 152: 1–8.
17. Hammarberg K., Clarke V.E.: Reasons for delaying childbearing — a survey of women aged over 35 years seeking assisted reproductive technology. Aust Fam Physician. 2005; 34 (3): 187–206.
18. Kim M., Park J., Kim S.H., et al.: The trends and risk factors to predict adverse outcomes in gestational diabetes mellitus: a 10-year experience from 2006 to 2015 in a single tertiary center. Obstet Gynecol Sci. 2018; 61: 309–318.
19. Wender-Ożegowska E., Bomba-Opoń D., Brązert J., et al.: The Polish Society of Gynaecologists and Obstetricians standards for the management of patients with diabetes. Ginekologia i Perinatologia Praktyczna. 2017; 2: 215–229.
20. Egan A.M., Dunne F.P.: Epidemiology of Gestational and Pregestational Diabetes Mellitus. In: Lapolla A., Metzger B.E. (eds.): Gestational Diabetes. A Decade after the HAPO Study. Front Diabetes. Basel, Karger, 2020; 28: 1–10.
21. Egan A.M., Dennedy M.C., Al-Ramli W., et al.: ATLANTIC-DIP: excessive gestational weight gain and pregnancy outcomes in women with gestational or pregestational diabetes mellitus. J Clin Endocrinol Metab. 2014; 99: 212–219.
22. Ferreira L.A.P., Piccinato C.A., Cordioli E., et al.: Pregestational body mass index, weight gain during pregnancy and perinatal outcome: a retrospective descriptive study. Einstein (Sao Paulo). 2019; 18: eAO4851.
23. Brown J., Kapurubandara S., McGee T.M.: Confounding effect of ethnic diversity on booking-in body mass index and prevalence of gestational diabetes and hypertensive disorders in pregnant women in western Sydney 1997–2016. Aust N Z J Obstet Gynaecol. 2020; 60: 369–375.
24. Lavery J.A., Friedman A.M., Keyes K.M., et al.: Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG. 2017; 124: 804–813.
25. Fitzpatrick K.E., Tuffnell D., Kurinczuk J.J., et al.: Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG. 2017; 124: 1097–1106.
Go to article

Authors and Affiliations

Magdalena Wilk
1 2
Katarzyna Cyganek
1 2
Bartłomiej Matejko
1 2
Sabina Krzyżowska
1 2
Izabela Lasoń
1 2
Barbara Katra
1 2
Joanna Zięba-Parkitny
2
Przemysław Witek
1 2
Maciej T. Małecki
1 2

  1. Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
  2. University Hospital, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article summarizes technical aspects of preparing printable 3D anatomical models created from radiological data (CT, MRI) and discusses their usefulness in surgery of the human skull. Interdisciplinary approach to the capabilities of the 3D printers, and the materials used for manufacturing 3D objects oriented on replicating anatomical structures has created new possibilities for simulating and planning surgical procedures in clinical practice settings.
Go to article

Bibliography

1. Ameil M., Delattre J.F., Cordobes B., Flament J.B.: Computerized reconstruction of an anatomical structure based on digitized sections. Anat Clin. 1984; 5 (4): 261–264. doi: 10.1007/BF01798749.
2. Vannier M.W., Marsh J.L., Warren J.O.: Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984; 150 (1): 179–184. doi: 10.1148/radiology.150.1.6689758.
3. Groth C., Kravitz N.D., Jones P.E, Graham J.W., Redmond W.R.: Three-dimensional printing technology. J Clin Orthod. 2014; 48 (8): 475–485. PMID: 25226040.
4. Onuh S.O., Yusuf Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf. 1999; 10 (3–4): 301–311. doi: 10.1023/ A:1008956126775.
5. Anderson J.R., Thompson W.L., Alkattan A.K, Diaz O., Klucznik R., Zhang Y.J., Britz G.W., Grossman R.G., Karmonik C.: Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016; 8: 517–520. doi: 10.1136/neurintsurg-2015-011686.
6. Anderl H., Zur Nedden D., Mühlbauer W., Twerdy K., Zanon E., Wicke K., Knapp R.: CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plastic Surg. 1994; 47 (1): 60–64. doi: 10.1016/0007-1226(94)90121-x.
7. Eltorai A.E., Nguyen E., Daniels A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics. 2015; 38 (11): 684–687. doi : 10.3928/01477447-20151016-05.
8. Hoch E., Tovar G.E., Borchers K.: Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014; 46 (5): 767– 778. doi: 10.1093/ejcts/ezu242.
9. Kamali P., Dean D., Skoracki R., Koolen P.G., Paul M.A., Ibrahim A.M., Lin S.J.: The current role of three-dimensional printing in plastic surgery. Plast Reconstr Surg. 2016; 137 (3): 1045–1055. doi: 10.1097/01.prs.0000479977.37428.8e.
10. VanKoevering K.K., Hollister S.J., Green G.E.: Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017; 143 (2): 178– 183. doi: 10.1001/jamaoto.2016.3002.
11. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
12. Sharma N., Aggarwal L.M.: Automated medical image segmentation techniques. J Med Phys. 2010; 35 (1): 3–14. doi: 10.4103/0971-6203.58777.
13. Withey D.J., Koles Z.J.: A review of medical image segmentation: methods and available software. Int J Bioelectromagn. 2008; 10 (3): 125–148.
14. Pal N.R., Pal S.K.: A review on image segmentation techniques. Patt Rec. 1993; 26 (9): 1277–1294. doi: 10.1016/0031-3203(93)90135-J.
15. Sahoo P.K., Soltani S.A. Wong A.K.C.: A survey of thresholding techniques. Comput Vis Graph Im Proc. 1988; 41 (2): 233–260. doi: 10.1016/0734-189X(88)90022-9.
16. Winder J., Bibb R.: Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005; 63 (7): 1006–1015. doi: 10.1016/j.joms.2005.03.016.
17. Fleiter T., Hoffmann R., Niemeier R., Claussen C.D.: Preoperative planning and follow-up with spiral CT and stereolithographic models in craniofacial surgery. In Advances in CT III. Springer, Berlin, Heidelberg 1994; 149–156.
18. Mankovich N.J., Cheeseman A.M., Stoker N.G.: The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990; 3 (3): 200–203. doi: 10.1007/BF03167610.
19. Stoker G.N., Mankovich N.J., Valentino D.: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg. 1992; 50: 466–471. doi: 10.1016/ s0278-2391(10)80317-9.
20. Eppley B.L., Sadove A.M.: Computer-generated patient models for reconstruction of cranial and facial deformities. J Craniofac Surg. 1998; 9 (6): 548–556. doi: 10.1097/ 00001665-199811000-00011.
21. Müller A., Krishnan K.G., Uhl E., Mast G.: The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003; 14 (6): 899–914. doi: 10.1097/00001665-200311000-00014.
22. Singare S., Yaxiong L., Dichen L., Bingheng L., Sanhu H., Gang L.: Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyp J. 2006; 12 (4): 206–213. doi: 10.1108/ 13552540610682714.
23. Kermer C., Lindner A., Friede I., Wagner A., Millesi W.: Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998; 26 (3): 136–139. doi: 10.1016/s1010-5182(98) 80002-4.
24. Kernan B.T., Wimsatt J.A.: Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg. 2000; 58 (3): 349– 351. doi: 10.1016/s0278-2391(00)90071-5.
25. Ehrenberg R.: Plastic implant replaces three-quarters of man’s skull. Science News. March 11, 2013.
26. Sunderland I.R., Edwards G., Mainprize J., Antonyshyn O.: A technique for intraoperative creation of patient-specific titanium mesh implants. Plast Surg (Oakv). 2015; 23 (2): 95–99. doi: 10.4172/plastic-surgery.1000909.
27. Bell R.B., Markiewicz M.R.: Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009; 67 (12): 2559–2570. doi: 10.1016/j.joms.2009.07.098.
28. D’Urso P.S., Atkinson R.L., Lanigan M.W., Earwaker W.J., Bruce I.J., Holmes A., Barker T.M., Effeney D.J., Thompson R.G.: Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg. 1998; 51 (7): 522–530. doi: 10.1054/ bjps.1998.0026.
29. D’Urso P.S., Redmond M.J.: A method for the resection of cranial tumours and skull reconstruction. Br J Neurosurg. 2000; 14 (6): 555–559. doi: 10.1080/ 02688690020005581.
30. Erickson D.M., Chance D., Schmitt S., Mathis J.: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. 1999; 57 (9): 1040–1043.
31. Cui J., Chen L., Guan X., Ye L., Wang H., Liu L.: Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014; 72 (6): 1138-e1-14. doi: 10.1016/j.joms.2014.02.023.
32. Frühwald J., Schicho K.A., Figl M., Benesch T., Watzinger F., Kainberger F.: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg. 2008; 19 (1): 22–26. doi: 10.1097/scs.0b013e318052ff1a.
33. Choi J.Y., Choi J.H., Kim N.K., Kim Y., Lee J.K., Kim M.K., Lee J.H., Kim M.J.: Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002; 31.(1): 23–32. doi: 10.1054/ijom.2000.0135.
34. Barker T.M., Earwaker W.J., Lisle D.A.: Accuracy of stereolithographic models of human anatomy. Australas Radiol. 1994; 38 (2): 106–111. doi: 10.1111/j.1440-1673.1994.tb00146.x.
35. Chang P.S., Parker T.H., Patrick C.W., Miller M.J.: The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003; 14 (2): 164–170. doi: 10.1097/00001665-200303000-00006.
36. Nizam A., Gopal R., Naing N.L., Hakim A.B., Samsudin A.R.: Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch Orofac Sci. 2006; 1: 60–66.
37. Chia H.N., Wu B.M.: Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9 (1): 4. doi: 10.1186/s13036-015-0001-4.
38. Hsieh T.Y., Dedhia R., Cervenka B., Tollefson T.T.: 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2017; 25 (4): 291–299. doi: 10.1097/MOO.0000000000000373.
39. Jakus A.E., Rutz A.L., Shah R.N.: Advancing the field of 3D biomaterial printing. Biomed Mater. 2016; 11 (1): 014102. doi: 10.1088/1748-6041/11/1/014102.
40. Poukens J., Haex J., Riediger D.: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003; 8 (3): 146–154. doi: 10.3109/10929080309146049.
41. Wang Y., Ni M., Tang P.F., Li G.: Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res. 2009; 27 (4): 477–482. doi: 10.1002/jor.20782.
42. Ballard D.H., Trace A.P., Ali S., Hodgdon T., Zygmont M.E., DeBenedectis C.M., Smith S.E., Richardson M.L., Patel M.J., Decker S.J., Lenchik L.: Clinical Applications of 3D Printing: Primer for Radiologists. Acad Radiol. 2018; 25 (1): 52–65. doi: 10.1016/j.acra.2017.08.004.
43. Chepelev L., Giannopoulos A., Tang A., Mitsouras D., Rybicki F.J.: Medical 3D printing: methods to standardize terminology and report trends. 3D Print Med. 2017; 3 (1): 4. doi: 10.1186/s41205-017-0012-5.
44. Bauermeister A.J., Zuriarrain A., Newman M.I.: Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016; 77 (5): 569– 576. doi: 10.1097/SAP.0000000000000671.
45. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
46. Waran V., Devaraj P., Hari Chandran T., Muthusamy K.A., Rathinam A.K., Balakrishnan Y.K., Tung T.S., Raman R., Rahman Z.A.: Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci. 2012; 19 (4): 574–577. doi: 10.1016/j.jocn.2011.07.031.
Go to article

Authors and Affiliations

Janusz Skrzat
1

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

We define as preterm any newborn born before 37 weeks of gestation. The incidence of inguinal hernia is 1–4.4% among full term neonates and older children. In preterm newborns it is significantly more often, with an incidence that raises up to 30%. In this comprehensive review of the literature we provide evidence-based answers in various questions concerning the optimal treatment of inguinal hernias in preterm neonates. Such questions include the proper time of intervention, the choice of optimal anesthesia, the necessity for contralateral investigation in case of an ipsilateral hernia, the prevention of post-operative apnea and the choice between classic and laparoscopic surgical techniques.
Go to article

Bibliography

1. Lloyd D.A., Rintala R.: Inguinal hernia and hydrocele. In: O’Neill J.A., Rowe M.I., Grosfeld J.L., Fonkalsrud E.W., Coran A.G. (eds.) Pediatric surgery. Mosby, St Louis, 1998; pp. 1071–1086.
2. Lau S.T., Lee Y.H., Caty M.G.: Current management of hernias and hydroceles. Semin Pediatr Surg. 2007; 16: 50–57.
3. Vaos G., Gardikis S., Kambouri K., et al.: Optimal timing for repair of an inguinal hernia in premature infants. Pediatr Surg Int. 2010; 26: 379–385.
4. Crankson S.J., Al Tawil K., Al Namshan M., et al.: Management of inguinal hernia in premature infants: 10-year experience. J Indian Assoc Pediatr Surg. 2015; 20: 21–24.
5. Uemera S., Woodward A., Amenera R., et al.: Early repair of inguinal hernia in premature babies. Pediatr Surg Int. 1999; 15: 36–39.
6. Steward D.J.: Preterm infants are more prone to complications following minor surgery than are term infants. Anesthesiology. 1982; 56: 304–306.
7. Vogels H.D., Bruijnen C.J., Beasley S.W.: Predictors of recurrence after inguinal herniotomy in boys. Pediatr Surg Int. 2009; 25: 235–238.
8. Lautz T.B., Raval M.V., Reynolds M.: Does timing matter? A national perspective on the risk of incarceration in premature neonates with inguinal hernia. J Pediatr. 2011; 158: 573–577.
9. Antonoff M.B., Kreykes N.S., Saltsman D.A., et al.: American Academy of Pediatrics Section on Surgery hernia survey revisited. J Pediatr Surg. 2005; 40: 1009–1014.
10. Takahashi A., Toki F., Yamamoto H., et al.: Outcomes of herniotomy in premature infants: recent 10 year experience. Pediatr Int. 2012; 54: 491–495.
11. Lee S.L., Gleason J.M., Sydorak R.M.: A critical review of premature infants with inguinal hernias: optimal timing of repair, incarceration risk, and postoperative apnea. J Pediatr Surg. 2011; 46: 217–220.
12. Frumiento C., Abaijan J.: Spinal anesthesia for preterm infants undergoing inguinal hernia repair. Arch Surg. 2000; 135: 445–451.
13. Raveenthiran V.: Controversies Regarding Neonatal Inguinal Hernia. J Neonat Surg. 2014; 3: 31–34.
14. Esposito C., Turial S., Escolino M., et al.: Laparoscopic inguinal hernia repair in premature babies weighing 3 kg or less. Pediatr Surg Int. 2012; 28: 989–992.
15. Turial S., Enders J., Krause K., et al.: Laparoscopic inguinal herniorrhaphy in babies weighing 5 kg or less. Surg Endosc. 2011; 25: 72–78.
16. Chan I.H., Lau C.T., Chung P.H., et al.: Laparoscopic inguinal hernia repair in premature neonates: is it safe? Pediatr Surg Int. 2013; 29: 327–330.
17. Pastore V., Bartoli F.: Neonatal laparoscopic inguinal hernia repair a 3-year experience. Hernia. 2015; 19: 611–615.
18. Tackett L.D., Breur C.K., Luks F.I., et al.: Incidence of contralateral inguinal hernia: a prospective analysis. J Pediatr Surg. 1999; 34: 684–688.
19. Steven M., Greene O., Nelson A., et al.: Contralateral inguinal exploration in premature neonates: is it necessary? Pediatr Surg Int. 2010; 26: 703–706.
20. Marulaiah M., Atkinson J., Kukkady A., et al.: Is contralateral exploration necessary in preterm infants with unilateral inguinal hernia? J Pediatr Surg. 2006; 41:2004–2007. 21. Steigman C., Sotelo-Avila C., Weber T.: The incidence of spermatic cord structures in inguinal hernia sacs from male children. Am J Surg Pathol. 1999; 23: 880–885. 22. Dehner L.P.: Inguinal hernia in the male child: where the latest skirmish line has formed. Am J Surg Pathol. 1999; 23: 869–887. 23. Walc L., Bass J., Rubin S., et al.: Testicular fate after inguinal hernia repair and orchidopexy in patients under 6 months of age. J Pediatr Surg. 1995; 30: 1195–1197. 24. Laituri C.A., Garey C.L., Pieters B.J., et al.: Overnight observation in former premature infants undergoing inguinal hernia repair. J Pediatr Surg. 2012; 47: 217–220. 25. Walther-Larsen S., Rasmussen L.S.: The former preterm infant and riskof post-operative apnoea: recommendations for management. Acta Anesthsiol Scand. 2006; 50: 888–893. 26. Murphy J.J., Swanson T., Ansermino M., et al.: The frequency of apneas in premature infants after inguinal hernia repair: do they need overnight monitoring in the intensive care unit? J Pediatr Surg. 2008; 43: 865–868. 27. Özdemir T., Arıkan A.: Postoperative apnea after inguinal hernia repair in formerly premature infants: impacts of gestational age, postconceptional age and comorbidities. Pediatr Surg Int. 2013; 29: 801–804.
Go to article

Authors and Affiliations

Ioannis Patoulias
1
Ioanna Gkalonaki
1
Dimitrios Patoulias
2

  1. First Department of Pediatric Surgery, Aristotle University of Thessaloniki, General Hospital “G Gennimatas”, Thessaloniki, Greece
  2. First Department of Internal Medicine, General Hospital “Hippokration”, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

Malignancies of the hematopoietic system frequently are associated with severe cytopenias requiring transfusions of blood components. Refusal of blood components by Jehovah’s Witnesses (JW) produces challenges to treatment. In this report we describe the outcome of hematological malignancies of JW patients treated without transfusions. Altogether, eight JW, diagnosed 1994–2015, 6 (75%) females, the median age at diagnosis 40 years (range, 20–78), were included into the analysis. The diagnoses were: acute lymphoblastic leukemia (2, 25%), acute myeloid leukemia (2, 25%), non-Hodgkin’s lymphomas (4, 50%). One patient died without treatment while the remaining 7 patients received treatment, including imatinib in 1 patient with BCR-ABL1+ acute lymphoblastic leukemia. Five (62.5%) patients received erythropoiesis stimulating agents. Median hemoglobin concentration at diagnosis was 8.7 g/dL (range, 6.3–13.1), and it decreased to 3.2 g/dL (range, 2.6–9.3) during first-line treatment. Median platelet count at diagnosis was 52 × 109/L (range, 15–392). All patients became thrombocytopenic upon treatment reaching median platelet count 8 × 109/L (range, 2–85). Five patients developed respiratory failure. Anemia contributed substantially to the death of 3 out of 6 patients (50%). One patient (17%) developed central nervous system bleeding in the course of thrombocytopenia. Objective response rate was 43%, with 29% complete remissions after first-line treatment. Despite the median overall survival of 15.3 months (95% CI, 0.2–52.2), all but one acute leukemia patients succumbed shortly after the diagnosis. To conclude, the outcome of JW treated because of hematological malignancies without blood transfusions is very dismal, nevertheless, selected patients can obtain complete remissions. Anemia contributes significantly to the death of JW.
Go to article

Bibliography

1. Bouchnita A., Eymard N., Moyo T.K., Koury M.J., Volpert V.: Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. Am J Hematol. 2016; 91 (4): 371– 378. doi: 10.1002/ajh.24291.
2. Wang Y., Gao A., Zhao H., et al.: Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1alpha/CCL3. Leukemia. 2016; 30 (9): 1897–1908. doi: 10.1038/leu.2016.81.
3. Bohlius J., Bohlke K., Castelli R., et al.: Management of Cancer-Associated Anemia With Erythropoiesis-Stimulating Agents: ASCO/ASH Clinical Practice Guideline Update. J Clin Oncol. 2019; 37 (15): 1336–1351. doi: 10.1200/JCO.18.02142.
4. Schiffer C.A., Bohlke K., Delaney M., et al.: Platelet Transfusion for Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2018; 36 (3): 283–299. doi: 10.1200/JCO.2017.76.1734.
5. Drozd-Sokolowska J.E., Wiktor-Jedrzejczak W.: Factors determining the risk of severe (WHO grades 3 and 4) hemorrhage in hematologic patients. Transfus Apher Sci. 2011; 44: 129–134. doi: 10.1016/j. transci.2011.01.004.
6. Rodgers G.M., Gilreath J.A., Alwan L., et al.: Cancer- and Chemotherapy Induced Anemia. NCCN Clinical Practice Guidelines in Oncology. https://www.nccn.org/professionals/physician_gls/f_guidelines. asp#anemia: NCCN; 2016.
7. Laszlo D., Agazzi A., Goldhirsch A., et al.: Tailored therapy of adult acute leukaemia in Jehovah’s Witnesses: unjustified reluctance to treat. Eur J Haematol. 2004; 72 (4): 264–267. doi: 10.1111/ j.0902-4441.2003.00211.x.
8. Chojnowski K., Janus A., Blizniewska K., Robak M., Trelinski J.: Long-lasting extreme anemia during the therapy of acute lymphoblastic leukemia in a Jehovah’s Witness patient. Transfusion. 2016; 56 (10): 2438–2442. doi: 10.1111/trf.13703.
9. Mazza P., Palazzo G., Amurri B., Cervellera M., Rizzo C., Maggi A.: Acute leukemia in Jehovah’s Witnesses: a challenge for hematologists. Haematologica. 2000; 85: 1221–1222.
10. Brown N.M., Keck G., Ford P.A.: Acute myeloid leukemia in Jehovah Witnesses. Leuk Lymphoma. 2008; 49 (4): 817–820. doi: 10.1080/10428190801911670.
11. Cullis J.O., Duncombe A.S., Dudley J.M., Lumley H.S., Apperley J.F., Smith A.G.: Acute leukaemia in Jehovah’s Witnesses. Br J Haematol. 1998; 100 (4): 664–668. doi: 10.1046/j.1365-2141.1998.00634.x.
12. Wilop S., Osieka R.: Antineoplastic chemotherapy in Jehovah’s Witness patients with acute myelogenous leukemia refusing blood products — a matched pair analysis. Hematology. 2018; 23 (6): 324–329. doi: 10.1080/10245332.2017.
13. Ford P.A., Grant S.J., Mick R., Keck G.: Autologous Stem-Cell Transplantation Without Hematopoietic Support for the Treatment of Hematologic Malignancies in Jehovah’s Witnesses. J Clin Oncol. 2015; 33 (15): 1674–1679. doi: 10.1200/JCO.2014.57.9912.
14. Agapidou A., Vakalopoulou S., Papadopoulou T., Chadjiaggelidou C., Garypidou V.: Successful Treatment of Severe Anemia using Erythropoietin in a Jehovah Witness with Non-Hodgkin Lymphoma. Hematol Rep. 2014; 6 (4): 5600. doi: 10.4081/hr.2014.5600.
15. Yamamoto Y., Kawashima A., Kashiwagi E., Ogata K.: A Jehovah’s Witness with Acute Myeloid Leukemia Successfully Treated with an Epigenetic Drug, Azacitidine: A Clue for Development of Anti-AML Therapy Requiring Minimum Blood Transfusions. Case Rep Hematol. 2014; 2014: 141260. doi: 10.1155/2014/141260.
16. Garelius H., Grund S., Stockelberg D.: Induction with azacytidine followed by allogeneic hematopoietic stem cell transplantation in a Jehovah’s Witness with acute monocytic leukemia. Clin Case Rep. 2015; 3 (5): 287–290. doi: 10.1002/ccr3.212.
17. Bareford D., Odeh B., Narayanan S., Wiltshire S.: Remission induction in a Jehovah’s witness patient with acute myeloid leukaemia using gemtuzumab ozogamicin. Transfus Med. 2005; 15 (5): 445–448. doi: 10.1111/j.1365-3148.2005.00611.x.
18. Fujisawa S., Naito K., Matsuoka T., Kobayashi M.: Complete remission induced by gemtuzumab ozogamicin in a Jehovah’s Witness patient with acute myelogenous leukemia. Int J Hematol. 2007; 85 (5): 418–420. doi: 10.1532/IJH97.07018.
19. Donahue L.L., Shapira I., Shander A., Kolitz J., Allen S., Greenburg G.: Management of acute anemia in a Jehovah’s Witness patient with acute lymphoblastic leukemia with polymerized bovine hemoglobin- based oxygen carrier: a case report and review of literature. Transfusion. 2010; 50 (7): 1561– 1567. doi: 10.1111/j.1537-2995.2010.02603.x.
Go to article

Authors and Affiliations

Joanna Ewa Drozd-Sokołowska
1
Anna Waszczuk-Gajda
1
Jadwiga Dwilewicz-Trojaczek
1
Alicja Walesiak
1
Monika Krzyżanowska
1
Monika Paluszewska
1
Jolanta Wieczorek
1
Wiesław Wiktor-Jędrzejczak
1

  1. Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to define the frequency prevalence of the incorporation of sphenoid sinuses’ septum / septa in the carotid canal of the adult population.
M a t e r i a l s and M e t h o d s: 296 computed tomography (CT) scans of the patients (147 females, 149 males), who did not present any pathology in the sphenoid sinuses, were evaluated in this retrospective analysis. Spiral CT scanner — Siemens Somatom Sensation 16 — was used to glean the medical images. Standard procedure applied in the option Siemens CARE Dose 4D. No contrast medium was administered. Multiplans reconstruction (MPR) tool was used in order to obtain frontal and sagittal planes from the transverse planes previously received.
R e s u l t s: Bilateral incorporation of the main septum (MS) in the carotid canal was not present in any of the patients, whereas unilateral incorporation was noticed in 21.96% of the patients (17.68% females, 26.17% males). On the right side it occurred in 11.82% of cases (10.88% females, 12.75% males), and on the left side in 10.14% of cases (6.8% females, 13.42% males). Bilateral incorporation of the additional septum (AS) was found in 8.45% of the patients (4.08% females, 12.75% males), whereas unilateral incorporation was noted in 28.37% of the patients. It was seen on the right side in 11.82% of cases (12.93% females, 10.74% males), and on the left side in 16.55% cases (15.65% females, 17.45% males). The most common variant was the incorporation of only one of the septa (either the MS or the AS) in the wall of the carotid canal unilaterally. Such situation took place in 30.07% of the patients (29.25% females, 30.87% males).
Incorporation of two septa on the same side was noticed in 4.39% of cases (4.08% females, 4.7% males), and incorporation of three septa in 0.34% of cases (0.7% males).
C o n c l u s i o n s: The anatomy of the paranasal sinuses is varied to a great extent, hence performing a CT scan is crucial before the scheduled surgery, as it may lessen the unforeseeable surgical complications, that may result from the high prevalence of variants in the sinuses.


Go to article

Bibliography

1. Jaworek-Troć J., Zarzecki M., Bonczar A., Kaythampillai L.N., Rutowicz B., Mazur M., Urbaniak J., Przybycień W., Piątek-Koziej K., Kuniewicz M., Lipski M., Kowalski W., Skrzat J., Loukas M., Walocha J.: Sphenoid bone and its sinus — anatomo-clinical review of the literature including application to FESS. Folia Med Crac. 2019; 59 (2): 45–59. doi: 10.24425/fmc.2019.128453.
2. Jaworek-Troć J., Zarzecki M., Mróz I., Troć P., Chrzan R., Zawiliński J., Walocha J., Urbanik A.: The total number of septa and antra in the sphenoid sinuses — evaluation before the FESS. Folia Med Crac. 2018; 58 (3): 67–81. doi: 10.24425/fmc.2018.125073.
3. Jaworek-Troć J., Iwanaga J., Chrzan R., Zarzecki J.J., Żmuda P., Pękala A., Tomaszewska I.M., Tubbs R.S., Zarzecki M.P.: Anatomical variations of the main septum of the sphenoidal sinus and its importance during transsphenoidal approaches to the sella turcica. Translational Research in Anatomy. 2020 Nov; 21: 100079, https://doi.org/10.1016/j.tria.2020.100079.
4. Abdullah B.J., Arasaratnam A., Kumar G., Gopala K.: The sphenoid sinuses: computed tomographic assessment of septation, relationship to the internal carotid arteries and sidewall thickness in the Malaysian population. J HK Coll Radiol. 2001; 4: 185–188.
5. Eryilmaz A., Ozeri C., Bayiz U., Samim E., Gocmen H., Akmansu H., Safak M.A., Dursun E.: Functional endoscopic sinus surgery (FESS). Turk J Med Res. 1993; 11 (5): 221–223.
6. Haetinger R.G., Navarro J.A.C., Liberti E.A.: Basilar expansion of the human sphenoidal sinu: an integrated anatomical and computerized tomography study. Eur Radiol. 2006; 16: 2092–2099.
7. Kantarci M., Karasen R.M., Alper F., Onbas O., Okur A., Karaman A.: Remarkable anatomic variantions in paranasal sinus region and their clinical importance. European Journal of Radiology. 2004; 50: 296–302.
8. Kazkayasi M., Karadeniz Y., Arikan O.K.: Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005; 43: 109–114.
9. Keast A., Yelavich S., Dawes P., Lyons B.: Anatomical variations of the paranasal sinuses in Polynesian and New Zealand European computerized tomography scans. Otolaryngology-Head and Neck Surgery. 2008; 139: 216–221.
10. Mafee M.F., Chow J.M., Meyers R.: Functional endoscopic sinus surgery: anatomy, CT screening, indications and complications. AJR. 1993; 160: 735–744.
11. Mutlu C., Unlu H.H., Goktan C., Tarhan S., Egrilmez M.: Radiologic anatomy of the sphenoid sinus for intranasal surgery. Rhinology. 2001; 39: 128–132.
12. Perez-Pinas I., Sabate J., Carmona A., Catalina-Herrera C.J., Jimenez-Castellanos J.: Anatomical variations in the human paranasal sinus region studied by CT. J Anat. 2000; 197: 221–227.
13. Sareen D., Agarwail A.K., Kaul J.M., Sethi A.: Study of sphenoid sinus anatomy in relation to endoscopic surgery. Int. J Morphol. 2005; 23 (3): 261–266.
14. Terra E.R., Guedes F.R., Manzi F.R., Boscolo F.N.: Pneumatization of the sphenoid sinus. Dentomaxillofacial Radiology. 2006; 35: 47–49.
15. Becker D.G.: The minimally invasive, endoscopic approach to sinus surgery. Journal of Long-Term Effects of Medical Implants. 2003; 13 (3): 207–221.
16. Bogusławska R.: Badanie zatok przynosowych metoda tomografii komputerowej dla celów chirurgii endoskopowej. Warszawa 1995.
17. Krzeski A., Osuch-Wójcikiewicz E., Szwedowicz P., Tuszyńska A.: Chirurgia endoskopowa w leczeniu guzów jam nosa i zatok przynosowych. Mag ORL. 2004; 3 (3): 79–84.
18. Kapur E., Kapidzic A., Kulenovic A., Sarajlic L., Sahinovic A., Sahinovic M.: Septation oft he sphenoid sinus and ist clinical significance. International Journal of Collaborative Research on Internal Medicine & Public Health. 2012; 4 (10): 1793–1802.
19. Fernandez-Miranda J.C., Prevedello D.M., Madhok R., Morera V., Barges-Coll J., Reineman K., Snyderman C.H., Gardner P., Carrau R., Kassam A.B.: Sphenoid septations and their relationship with internal carotid arteries: anatomical and radiological study. Laryngoscope. 2009; 119: 1893–1896.
20. Sethi D.S., Stanley R.E., Pillay P.K.: Endoscopic anatomy of the sphenoid sinus and sella turcica. The Journal of Laryngology and Otology. 1995; 109: 951–955.
21. Lupascu M., Comsa Gh.I., Zainea V.: Anatomical variations of the sphenoid sinus — a study of 200 cases. ARS Medica Tomitana. 2014; 2 (77): 57–62.
22. Bademci G., Unal B.: Surgical importance of neurovascular relationships of paranasal sinus region. Turkish Neurosurgery. 2005; 15 (2): 93–96.
23. Elwany S., Elsaeid I., Thabet H.: Endoscopic anatomy of the sphenoid sinus. The Journal of Laryngology and Otology. 1999; 113: 122–126.
24. Anusha B., Baharudin A., Philip R., Harvinder S., Mohd Shaffie B., Ramiza R.R.: Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat. 2015; 37: 1182–1190.
25. Hamid O., El Fiky L., Hassan O., Kotb A., El Fiky S.: Anatomic variations of the sphenoid sinus and their impact on trans-sphenoid pituitary surgery. Skull Base. 2008; 18 (1): 9–15.
26. Stokovic N., Trkulja V., Dumic-Cule I., Cukovic-Bagic I., Lauc T., Vukicevic S., Grgurevic L.: Sphenoid sinus types, dimensions and relationship with surrounding structures. Ann Anat. 2016; 203: 69–76.
27. Tan H.M., Chong V.F.H.: CT of the paranasal sinuses: normal anatomy, variations and pathology. CME Radiology. 2001; 2 (3): 120–125.
28. Jaworek-Troć J., Walocha J.A., Chrzan R., Żmuda P., Zarzecki J.J., Pękala A., Depukat P., Kucharska E., Lipski M., Curlej-Wądrzyk A., Zarzecki M.P.: Protrusion of the carotid canal into the sphenoid sinuses: evaluation before endonasal endoscopic sinus surgery. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0086.
29. Jaworek-Troć J., Walocha J.A., Loukas M., Tubbs R.S., Iwanaga J., Zawiliński J., Brzegowy K., Zarzecki J.J., Curlej-Wądrzyk A., Kucharska E., Burdan F., Janda P., Zarzecki M.P.: Extensive pneumatisation of the sphenoid bone — anatomical investigation of the recesses of the sphenoid sinuses and their clinical importance. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0120.
Go to article

Authors and Affiliations

Joanna Jaworek-Troć
1 2
Michał Zarzecki
1
Dariusz Lusina
1
Tomasz Gładysz
3
Paweł Depukat
1
Agata Mazurek
1
Wojciech Twardokęs
4
Anna Curlej- Wądrzyk
5
Joe Iwanaga
6
Ewa Walocha
7
Robert Chrzan
2
Andrzej Urbanik
2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Dental Surgery, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  4. Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
  5. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  6. Department of Neurosurgery, Tulane University, New Orleans, USA
  7. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

B a c k g r o u n d: Stress is a major risk factor for cardiovascular (CV) disease. We hypothesized that past strong experiences might modulate acute CV autonomic responses to an unexpected acoustic stimulus.
A i m: The study’s aim was to compare acute CV autonomic responses to acoustic stress between students with and without a past strong experience associated with the acoustic stimulus.
M a t e r i a l s and M e t h o d s: Twenty five healthy young volunteers — medical and non-medical students — were included in the study. CV hemodynamic parameters, heart rate (HR), and blood pressure (BP) variability were assessed for 10 min at rest and for 10 min after two different acoustic stimuli: a standard sound signal and a specific sound signal used during a practical anatomy exam (so-called “pins”).
R e s u l t s: Both sounds stimulated the autonomic nervous system. The “pins” signal caused a stronger increase in HR in medical students (69 ± 10 vs. 73 ± 13 bpm, p = 0.004) when compared to non-medical students (69 ± 6 vs. 70 ± 10, p = 0.695). Rises in diastolic BP, observed 15 seconds after sound stressors, were more pronounced after the “pins” sound than after the standard sound signal only in medical students (3.1% and 1.4% vs. 3% and 4.4%), which was also reflected by low-frequency diastolic BP variability (medical students: 6.2 ± 1.6 vs. 4.1 ± 0.8 ms2, p = 0.04; non-medical students: 6.0 ± 4.3 vs. 4.1 ± 2.6 ms2, p = 0.06).
C o n c l u s i o n s: The “pins” sound, which medical students remembered from their anatomy practical exam, provoked greater sympathetic activity in the medical student group than in their non-medical peers. Thus, past strong experiences modulate CV autonomic responses to acute acoustic stress.
Go to article

Bibliography

1. Florian J.P., Simmons E.E., Chon K.H., Faes L., Shykoff B.E.: Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion. J Appl Physiol (1985). 2013 Nov 1; 115 (9): 1275–1289.
2. Björ B., Burström L., Karlsson M., Nilsson T., Näslund U., Wiklund U.: Acute effects on heart rate variability when exposed to hand transmitted vibration and noise. Int Arch Occup Environ Health. 2007 Nov; 81 (2): 193–199.
3. Koelsch S., Jäncke L.: Music and the heart. Eur Heart J. 2015 Nov 21; 36 (44): 3043– 3049.
4. Ekuni D., Tomofuji T., Takeuchi N., Morita M.: Gum chewing modulates heart rate variability under noise stress. Acta Odontol Scand. 2012 Dec; 70 (6): 491–496.
5. Cheng T.H., Tsai C.G.: Female Listeners’ Autonomic Responses to Dramatic Shifts Between Loud and Soft Music/Sound Passages: A Study of Heavy Metal Songs. Front Psychol. 2016 Feb 17; 7: 182.
6. Walker E.D., Brammer A., Cherniack M.G., Laden F., Cavallari J.M.: Cardiovascular and stress responses to short-term noise exposures-A panel study in healthy males. Environ Res. 2016 Oct; 150: 391–397.
7. Berntson G.G., Bigger J.T. Jr, Eckberg D.L., et al.: Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997; Nov; 34 (6): 623–648.
8. Cygankiewicz I., Zareba W.: Heart rate variability. Handb Clin Neurol. 2013; 117: 379–393.
9. Sacha J.: Interaction between heart rate and heart rate variability. Ann Noninvasive Electrocardiol. 2014 May; 19 (3): 207–216.
10. van Ravenswaaij-Arts C.M., Kollée L.A., Hopman J.C., Stoelinga G.B., van Geijn H.P.: Heart rate variability. Ann Intern Med. 1993 Mar 15; 118 (6): 436–447.
11. Buccelletti F., Bocci M.G., Gilardi E., et al.: Linear and nonlinear heart rate variability indexes in clinical practice. Comput Math Methods Med. 2012; 2012: 219080.
12. Goldberger A.L.: Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996; 347: 1312–1314.
13. Sassi R., Cerutti S., Lombardi F., et al.: Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015 Sep; 17 (9): 1341–1353.
14. Adlan A.M., Veldhuijzen van Zanten J.J.C.S., Lip G.Y.H., Paton J.F.R., Kitas G.D., Fisher J.P.: Acute hydrocortisone administration reduces cardiovagal baroreflex sensitivity and heart rate variability in young men. J Physiol. 2018; 596: 4847–4861.
15. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996 Mar 1; 93 (5): 1043– 1065.
16. Iyengar N., Peng C.K., Morin R., Goldberger A.L., Lipsitz L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996 Oct; 271 (4 Pt 2): R1078-84.
17. Baek H.J., Cho C.H., Cho J., Woo J.M.: Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed J E Health. 2015; 21 (5): 404–414.
18. Przybylska-Felus M., Furgala A., Zwolinska-Wcislo M., et al.: Disturbances of autonomic nervous system activity and diminished response to stress in patients with celiac disease. J Physiol Pharmacol. 2014 Dec; 65 (6): 833–841.
19. de Castro B.C., Guida H.L., Roque A.L., et al.: Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver. Noise Health. 2014; Jan–Feb; 16 (68): 57–62.
20. Holand S., Girard A., Laude D., Meyer-Bisch C., Elghozi J.L.: Effects of an auditory startle stimulus on blood pressure and heart rate in humans. J Hypertens. 1999; 17 (12 Pt 2): 1893–1897.
21. Ernst G.: Hidden Signals-The History and Methods of Heart Rate Variability. Front Public Health. 2017 Oct 16; 5: 265.
22. Carrillo A.E., Flouris A.D., Herry C.L., et al.: Heart rate variability during high heat stress: a comparison between young and older adults with and without Type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2016 Oct 1; 311 (4): R669–R675.
23. Wang X., Liu B., Xie L., Yu X., Li M., Zhang J.: Cerebral and neural regulation of cardiovascular activity during mental stress. Biomed Eng Online. 2016 Dec 28; 15 (Suppl 2): 160.
24. Castaldo R., Xu W., Melillo P., Pecchia L., Santamaria L., James C.: Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug; 2016: 3805–3808.
Go to article

Authors and Affiliations

Michał Jurczyk
1
Andrzej Boryczko
1
Agata Furgała
1
Adrian Poniatowski
1
Andrzej Surdacki
2
Krzysztof Gil
1

  1. Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
  2. Second Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Intensive hypoglycemic treatment is the strongest preventive strategy against the development of microvascular complications of type 2 diabetes (T2DM), including diabetic nephropathy. However, some antidiabetic drugs, i.e. sodium-glucose cotransporter-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have an additional renoprotective effect beyond glucose control by itself. Similar, both SGLT-2i and GLP1-RA have been demonstrated to decrease the risk of adverse cardiovascular (CV) events in CV outcome trials. Nevertheless, there are relevant differences in CV and renal effects of SGLT-2i and GLP1-RA. First, SGLT2i reduced the incidence and progression of albuminuria and prevented loss of kidney function, while predominant renal benefits of GLP1-RA were driven by albuminuria outcomes. Second, the risk of heart failure (HF) hospitalizations decreased on SGLT2i but not on GLP1-RA, which gives priority to SGLT2i in T2DM and HF, especially with depressed EF. Third, either GLP1-RA (reducing predominantly atherosclerosis-dependent events) or SGLT-2i, should be used in T2DM and established atherosclerotic CV disease (ASCVD) or other indicators of high CV risk. In this review, we have briefly compared clinical practice guidelines of the American Diabetes Association (2020 and 2021 versions), Polish Diabetes Association (2020) and the European Society of Cardiology/European Association for the Study of Diabetes (2019), with a focus on the choice between SGLT-2i and GLP1-RA in patients with diabetic kidney disease.
Go to article

Bibliography

1. American Diabetes Association: Microvascular complications and foot care: Standards of Medical Care in Diabetes-2021. Standards of Medical Care in Diabetes–2020. Diabetes Care. 2020; 43 (Suppl 1): S135–S151.
2. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43 (Suppl 1): S98–S110.
3. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021; 44 (Suppl 1): S111–S124.
4. Williams D.M., Nawaz A., Evans M.: Renal outcomes in type 2 diabetes: A review of cardiovascular and renal outcome trials. Diabetes Ther. 2020; 11: 369–386.
5. Heerspink H.J.L., Stefánsson, B.V., Correa-Rotter, et al.: Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383: 1436–1446.
6. Jhund P.S., Solomon S.D., Docherty K.F., et al.: Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: Results of DAPA-HF. Circulation 2020 Oct 12; doi: 10.1161/CIRCULATIONAHA.120.050391.
7. Packer M., Anker S.D., Butler J., et al.: Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383: 1413–1424.
8. American Diabetes Association: Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019; 42 (Suppl 1): S90–S102.
9. Diabetes Poland (Polish Diabetes Association): 2020 Guidelines on the management of diabetic patients: A position of Diabetes Poland. Clin Diabetol. 2020; 9: 1–101.
10. Cosentino F., Grant P.J., Aboyans V., et al.: 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41: 255–323.
Go to article

Authors and Affiliations

Ewa Wieczorek-Surdacka
1
Andrzej Surdacki
2
Jolanta Świerszcz
3
Bernadeta Chyrchel
4

  1. Chair and Department of Nephrology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Second Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  4. Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

O b j e c t i v e s: Periapical inflammation is one of the most common pathologies within the jaws, leading to the destruction of periodontal ligaments, bone resorption and the formation of periapical granulomas or radicular cysts. The final diagnosis can be made only on the basis of histopathological examination. The aim of the study was to assess the conformity between clinical and histopathological diagnosis of inflammatory periapical lesions treated with apicoectomy.
M a t e r i a l s a n d M e t h o d s: The case histories of 52 patients subjected to surgical treatment at the Clinic of Conservative Dentistry with Endodontics between 2008 and 2018 were analyzed. Demographic data (age, gender), clinical (radiological) diagnosis, and data on the presence of sinus tracts and causal tooth were obtained from patients’ records. R e s u l t s: In the light of clinical and radiological examination, 32 (61.5%) periapical granulomas, 18 (34.6%) radicular cysts and 2 (3.9%) periapical scars were diagnosed, whereas the result of histopathological examination revealed granuloma in 34 (65.4%) cases and in 18 (34.6%) — radicular cyst. For clinical diagnosis of granuloma, the result coincided with the result of the histopathological examination in 28 cases, and in the case of cysts in 14. The analysis showed a significant relationship between the clinical and histopathological diagnoses (p <0.05).
C o n c l u s i o n s: The study emphasizes the importance of histopathological assessment for the proper diagnosis of periapical lesions.
C l i n i c a l R e l e v a n c e: The article emphasizes the high importance of histopathological examination for the correct diagnosis of chronic inflammatory periapical lesions.
Go to article

Bibliography

1. Nair P.N.R.: Pathogenesis of apical periodontitis and the cause of endododontic failures. Crit Rev Oral Biol Med. 2004; 15 (6): 348–381.
2. Dominiak M., Łysiak K., Znamirowska A., Szczepański W., Hałoń A.: Porównanie zgodności oceny klinicznej, histopatologicznej oraz radiologicznej przewlekłych zmian okołowierzchołkowych. Dent Med Probl. 2006; 43 (4): 504–510.
3. White E.: Podstawy radiodiagnostyki stomatologicznej. Wydawnictwo Medyczne Sanmedica, Warszawa, 1994; pp. 242–244.
4. Tay J.Y.Y., Bay B.H., Yeo J.F., Harris M., Meghji S., Dheen S.T.: Identification of RANKL in osteolytic lesions of the facial skeleton. J Dent Res. 2004; 83 (4): 349–353.
5. Ratajczak M., Sowa W., Walter A.: Molekularne podstawy powstawania zębopochodnej torbieli zapalnej — przegląd piśmiennictwa. Dent Med Probl. 2010; 47 (4): 496–501.
6. Garcia C.C., Sempere F.V., Diago A.P., Bowen E.M.: The post-endodontic periapical lesion: Histologic and etiopathogenic aspects. Med Oral Patol Oral Cir Bucal. 2007; 12 (8): 585–590.
7. Nair P.N.R., Sundqvist G., Sjögren U.: Experimental evidence supports the abscess theory of development of radicular cysts. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2008; 106 (2): 294–303.
8. Von Arx T.: Apical surgery: A review of current techniques and outcome. Saudi Dent J. 2011; 23 (1): 9–15.
9. Diegues L.L., Robazza C.R.C., Hanemann J.A.C., Pereira A.A.C., Silva C.O.: Correlation between clinical and histopathological diagnoses in periapical inflammatory lesions. J Investig Clin Dent. 2011; 2 (3): 184–186.
10. Love R.M., Firth N.: Histopathological profile of surgically removed persistent periapical radiolucent lesions of endodontic origin. Int Endod J. 2009; 42 (3): 198–202.
11. Akinyamoju A.O., Gbadebo S.O., Adeyemi B.F.: Periapical lesions of the jaws: a review of 104 cases in ibadan. Ann Ibd Pg Med. 2014; 12 (2): 115–119.
12. Lin H.P., Chen H.M., Yu C.H., Kuo R.C., Kuo Y.S., Wang Y.P.: Clinicopathological study of 252 jaw bone periapical lesions from a private pathology laboratory. J Formos Med Assoc. 2010; 109 (11): 810–818.
13. Carrillo C., Penarrocha M., Ortega B., Martí E., Bagán J.V., Vera F.: Correlation of Radiographic Size and the Presence of Radiopaque Lamina With Histological Findings in 70 Periapical Lesions. J Oral Maxillofac Surg. 2008; 66 (8): 1600–1605.
14. Obuchowicz R., Nurzyńska K., Obuchowicz B., Urbanik A., Piórkowski A.: Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions. Appl Sci. 2019; 9 (15): 2968.
Go to article

Authors and Affiliations

Paweł Myciński
1
Katarzyna Dobroś
1
Tomasz Kaczmarzyk
2
Joanna Zarzecka
1

  1. Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Oral Surgery, Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The SARS-CoV-2 pandemic contributed to the implementation of changes in the methodology of conducting many courses at medical universities. Achieving learning outcomes was associated with self-discipline and an increased portion of students’ independent work. The aim of the study is to analyze the adaptation of teaching methods to the requirements of the COVID-19 pandemic at the Department of Medical Education of Jagiellonian University Medical College. The university authorities, instructors and students made every effort not to neglect their education. The Microsoft Teams platform allowed for the efficient organization of remote classes. Lectures, activities based on dialogue, brainstorming and role- -playing were conducted via the Internet. Presentations and short films were made available to students. The safety of individuals participating in classes was guaranteed by password access and an invitation sent prior to an online meeting. Remote learning allowed for the synthesis and deepening of students’ knowledge, improvement of communication skills and development of clinical thinking as future doctors. The disadvantages of online education was the inability to improve practical skills, especially on phantoms, under the direct supervision of a trained instructor.
Go to article

Bibliography

1. Ahmad Al Samaraee: The impact of the COVID-19 pandemic on medical education. British Journal of Hospital Medicine. 2020; 81 (7). Published Online: 20 Jul 2020 https://doi.org/10.12968/ hmed.2020.0191.
2. Skrzypek A., Stalmach-Przygoda A., Dębicka-Dąbrowska D., Kocurek A., Szopa M., Górski S., Szeliga M., Małecki M., Grodecka A., Cebula G., Nowakowski M.: Selected didactic methods used in education of medical students at the Department of Medical Education of Jagiellonian University Medical College. What’s new in medical didactics? General and Professional Education. 2018; 1: 26–32.
3. Silverman J., Kurtz S., Draper J.: Skills for Communicating with Patients, 3rd edition. London: CRC Press, 2016.
4. Małecki Ł., Stalmach-Przygoda A., Górski S., Kocurek A., Skrzypek A., Kowalska B., Nowakowski M.: Wprowadzenie całościowego kursu komunikacji medycznej dla studentów Wydziału Lekarskiego Uniwersytetu Jagiellońskiego Collegium Medicum.= The introduction of a comprehensive communication course for medical students of the Faculty of Medicine at the Jagiellonian University Medical College. Uniwersytet Jagielloński Collegium Medicum Zakład Dydaktyki Medycznej. Sztuka Leczenia. 2017; 1: 73–84.
5. Maran N.J., Glavin R.J.: Low- to high-fidelity simulation — a continuum of medical education? Medical Education. 2003; 37: 22–28.
6. Nikendei Ch., Huber J., Stiepak J., Huhn D., Lauter J., Krautter M.: Modification of Peyton’s four-step approach for small group teaching — a descriptive study. BMC Medical Education. 2014. https://doi. org/10.1186/1472-6920-14-68.
7. Skrzypek A., Szeliga M., Jagielski P., Perera I., Dębicka-Dąbrowska D., Wilczyńska-Golonka M., Górecki T., Cebula G.: The modified Peyton approach in the teaching of cardiac auscultation. Folia Med Crac. 2019; 59 (4): 21–32.
8. Skrzypek A., Kocurek A., Stalmach-Przygoda A., Małecki Ł., Górski S., Kowalska B., Szeliga M., Jabłoński K., Matłok M., Cebula G., Nowakowski M.: Rola profesjonalnych pacjentów symulowanych w nauczaniu komunikacji klinicznej. The role of professional simulated patients in teaching of clinical communication. General and Professional Education. 2017; 4: 29–35.
9. Czekajlo M., Dabrowski M., Dabrowska A.: Symulacja medyczna jako profesjonalne narzędzie wpływające na bezpieczeństwo pacjenta wykorzystywane w procesie nauczania. Merkur Lekarski. 2015; 38 (228): 360–363.
10. Green M., Tariq R., Green P.: Improving Patient Safety through Simulation Training in Anesthesiology: Where Are We? Anesthesiol Res Pract. 2016; 4237523. doi: 10.1155/2016/4237523. Epub 2016 Feb 1.
11. Dieckmann P., Patterson M., Lahlou S., Mesman J., Nystrom P., Krage R.: Variation and adaptation: learning from success in patient safety-oriented simulation training. Adv Simul (Lond). 2017; 2: 21. doi: 10.1186/s41077-017-0054-1.
12. Skrzypek A., Cegielny T., Szeliga M., Jabłoński K., Nowakowski M.: Different perceptions of Problem Based Learning among Polish and Scandinavian students. Is PBL the same for everyone? Preliminary study. General and Professional Education. 2017; 3: 58–64.
13. McMillan M., Little P.: Conceptualizing Problem-Based Learning: Ensuring Realization of Curriculum Intentions. J Probl Based Learn. 2020; 7 (1):1–2.
14. Lucey C.R., Johnston S.C.: The Transformational Effects of COVID-19 on Medical Education. JAMA. 2020; 324 (11): 1033–1034. doi: 10.1001/jama.2020.14136.
Go to article

Authors and Affiliations

Agnieszka Skrzypek
1
Ian Perera
1
Marta Szeliga
1
Grzegorz Cebula
1

  1. Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland

Instructions for authors

Manuscripts will be considered for publication in the form of Original Articles or Reviews. Submitted work must comply with ethical policy, which is based on the Committee on Publication Ethics (COPE) guidelines on good publication. (http://publicationethics.org/). Only manuscripts that are previously unpublished, and are not offered simultaneously elsewhere will be considered.
SUBMISSION
Folia Medica Cracoviensia only accepts electronic submission via e-mail at folmedcrac@pan.pl. Manuscripts will be assigned a unique manuscript number that must be quoted in correspondence. Papers and Reviews are refereed by experts in the field; the Editors reserve the right to reject an article without review. Please submit your covering letter or comments to the Editor as well as the names of two potential referees (including name, affiliation, and e-mail address). Currently, Authors have the only option to publish their articles in printed version. The online version will be available soon.
Original Articles
Original Articles describe the results of basic or clinical studies. The length of all Original Articles is limited to 6000 words, excluding acknowledgements and disclosures, references, tables, figures, table legends and figure legends. Please limit the number of figures and tables to a maximum of eight (e.g. four figures and four tables). Color figures can be included as necessary; however authors will be charged a fee (for details please contact editorial office).
Review Articles
Topical reviews of basic or clinical areas are invited by the Editor. Manuscript length is limited to 5000 words and 50 references. All Review articles are subject to review.
Language
The Folia Medica Cracoviensia uses American spelling. Authors for whom English is a second language may choose to have their manuscript professionally edited before submission to improve the English.

The complete set of instructions for Authors can be downloaded here as a PDF file: http://www.fmc.cm-uj.krakow.pl/pdf/Author_Guidelines_Folia_2017_Jul_31_KG1.pdf

This page uses 'cookies'. Learn more