Life Sciences and Agriculture

Journal of Plant Protection Research

Content

Journal of Plant Protection Research | 2021 | vol. 61 | No 3 |

Download PDF Download RIS Download Bibtex

Abstract

Today the use of plant extracts, in particular essential oils, is a natural alternative to synthetic insecticides in the fight against crop pests. In this study, the insecticidal activity of essential oils and powder of Xylopia aethiopica (Annonaceae) were tested by both fumigation and contact against Callosobruchus maculatus. The essential oil of X. aethiopica, obtained by steam distillation and the powder, with a particle size of 1 mm, were used for the tests. The analysis of essential oils and powder of X. aethiopica by GC-MS/FID and GC/MS-HS-SPME, showed that the main compounds were β-pinene (28.9–19.0%), 1,8-cineole (14.9–7.6%) and α-pinene (9.8–19.4%). Insecticidal activity of essential oils and powder of X. aethiopica, respectively, by fumigation (F) and contact (C) against C. maculatus showed toxicity LD50 = 0.2 ± 0.0 μl.cm–3, LT50 = 16.4 ± 1.2 hours (F) and LD50 = 9.2 ± 0.7 g.kg–1, LT50 = 69.6 ± 0.4 hours (C). The essential oil and powder of X. aethiopica can be considered as bio-insecticides against C. maculatus for the protection of cowpeas in Senegal.
Go to article

Bibliography


Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Adams R. 2007. Identification of Essential Oil Components by Gas Chromatography/Qua-drupole Mass Spectrometry. 4th ed., Allured Publishing Co, Carol Stream IL., USA.
Adedire C.O., Obembe O.M., Akinkurolere R.O., Oduleye S.O. 2011. Response of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. Journal of Plant Diseases and Protection 118 (2): 75–79. DOI: 10.1007/BF03356385
Ahmed S., Khan M.A., Ahmad N. 2002. Determination of susceptibility level of phosphine in various strains of dhora (Callosobruchus maculatus F.). International Journal of Agriculture and Biology 4: 329–331.
ANSD. 2018. Bulletin mensuel des statistiques économiques. Ministère de l’économie, des finances et du plan Sénégal, 140 pp. (in French)
Beck C.W., Bulmer L.S.A. 2014. Handbook on Bean Beetles, Callosobruchus maculatus. Texas A&M AgriLife Extension, Cowpea Weevils.
Boniface Y., Jean-Pierre N, Philippe S., Félicien A., Dominique S. 2010. Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (DUNAL) A. Richard contre les pathogènes des denrées alimentaires. Journal de la Société́ Ouest-Africaine de Chimie 29: 19–27.
Chougourou D.C., Alavo T.B.C. 2011. Systèmes de stockage et méthodes endogènes de lutte contre les insectes ravageurs des légumineuses à grains entreposées au Centre Bénin. Conseil Africain et Malgache de Enseignement Supérieur - Série A 12 (2): 137–141.
Diop S.M., Gueye M.T., Ndiaye I., Ndiaye E.H.B., Diop M.B., Thiam A., Fauconnier, M.L. and Lognay G. 2017. Study of the chemical composition of essential oils and floral waters of Cymbopogon citratus (DC.) Stapf (Poaceae) from Senegal. International Journal of Biological and Chemical Sciences 11 (4): 1884–1892. DOI: 10.4314/ijbcs.v11i4.37
Edwin E., Regina A., Ifeoma V. 2018. Insecticidal activity of Xylopia aethiopica (Family; Annonaceae) against Callosobruchus maculatus (F) (Coleoptera: Bruchidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Biological Studies 1 (3): 106–115.
Edwin I.E., Jacob I.E. 2017. Bio-insecticidal potency of five plant extracts against Cowpea Weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L). Jordan Journal of Biological Sciences 10 (4): 317-322.
Enan E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 130 (3): 325–337. DOI: 10.1016/S1532-0456(01)00255-1.
Fernando H.S., Karunaratne M.M. 2012. Ethnobotanicals for storage insect pest management: Effect of powdered leaves of Olax zeylanica in suppressing infestations of rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Tropical Forestry and Environment 2: 20–25.
Guèye M.T., Seck D., Wathelet J.P., Lognay G. 2011. Lutte contre les Ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnology, Agronomy, Society and Environment 15 (1): 183–194.
Ilboudo Z. 2009. Activité Biologique de quatre huiles essentielles contre Callosobruchus maculatus Fab. (Coleoptera : Bruchidae), insecte ravageur des stocks de niébé au Burkina Faso », Entomologie, Université de Ouagadougou, Burkina Fasso, 150 pp.
Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51 (1): 45–66. DOI: 10.1146/annurev.ento.51.110104.151146
Jirovetz L., Wobus A., Buchbauer G., Shafi M.P., Thampi P.T. 2004. Comparative analysis of the essential oil and SPME-headspace aroma compounds of Cyperus rotundus L. roots/tubers from South-India using GC, GC-MS and olfactometry, Journal of Essential Oil Bearing Plants 7 (2): 100–106. DOI: 10.1080/0972-060X.2004.10643373
Joulain D., König W. 1998. The Atlas of Sesquiterpene Data Hydrocarbons. EB Verlag, Hamburg, Germany. ISBN 3-930826-48-8.
Kabir B.G.J. 2013. Laboratory evaluation of efficacy of three Diatomaceous earth formulations against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) in stored wheat. European Scientific Journal 30 (9): 116–124.
Kayombo M.A., Mutombo T.J.M, Somue M.A., Muka M.P., Wembonyama O.M., Tshibangu B.K.E., Kaboko K.J. 2014. Effet de la poudre de Basilic (Ocimum basilicum) dans la conservation des graines de Niébé (Vigna unguiculata L. Walp.) en stock contre Callosobruchus maculatus F. à Mbuji- Mayi (RD. Congo). Congo sciences 2 (2): 61–66.
Keane S., Ryan M.F. 1999. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochemistry and Molecular Biology 29 (12): 1097–1104. DOI: 10.1016/S0965-1748(99)00088-0
Koffi S.E., Roger H.C.N., Kodjo E., Kokou A.A., Kokouvi D., Honoré K.K. 2012. Chemical composition and insecticidal activity of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) essential oil on Callosobruchus maculatus. Journal de la Societé Ouest-africaine de Chimie 34: 71–77.
Korunic Z. 1998. Review Diatomaceous earths, a group of natural insecticides. Journal of Stored Products Research 34 (2–3): 87–97. DOI: 10.1016/S0022-474X(97)00039-8
Kostyukovsky K., Rafaeli A., Gileadi C., Demchenko N., Shaaya E. 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science 58 (11): 1101–1106. DOI: 10.1002/ps.548
Kouninki H., Hance T.F.A., Noudjou F.A., Lognay G., Malaisse F., Ngassoum M.B., Mapongmetsem P.M., Ngamo T.L.S., Haubruge E. 2007. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. Journal of Applied Entomology 131 (4): 269–274.
Mills C., Cleary B.V., Walsh J.J., Gilmer J.F. 2010. Inhibition of acetylcholinesterase by Tea Tree oil. Journal of Pharmacy and Pharmacology 56 (3): 375–379. DOI: 10.1211/0022357022773
Mukendi K.R., Ntanga N.R., Kaseba K.S., Tshiamala N., Kamukenji A. and Mpoyi K.G. 2016. Dégâts des bruches sur le pouvoir germinatif des graines de quatre variétés de Niébé infesté pendant 60 jours à Ngandajika. Journal of Applied Biosciences 98: 9323–9329. DOI: http://dx.doi.org/10.4314/jab.v98i1.8
Ndiaye E.H.B., Gueye M.T., Ndiaye I., Diop S.M., Diop M.B., Thiam A., Fauconnier M.L., Lognay G. 2017. Chemical composition of distilled essential oils and hydrosols of four senegalese citrus and enantiomeric characterization of chiral compounds. Journal of Essential Oil Bearing Plants 20 (3): 820–834.
Ngamo L., Hanc T.H. 2007. Diversité des ravageurs des denrées et méthodes alternatives de lutte en milieu tropical. Tropicultura 25 (4): 215–220.
Nguemtchouin M.G.M. 2012. Formulation d’insecticides en poudre par adsorption des huiles essentielles de Xylopia aethiopica et de Ocimum gratissimum sur des argiles camerounaises modifiées. Thèse doctotat en cotutelle, universités Ngaoundere et Montpellier, 293 pp.
Sahaf B.Z., Moharramipour S., Meshkatalsadat M.H. 2008. Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium vastaneum (Herbst) and Sitophilus orzae (L.). Journal of Asia-Pacific Entomology 11 (4): 175–179.
Sarwar M., Ahmad N., Bux M., Tofique M. 2012. Potential of plant materials for the management of cowpea bruchid Callosobruchus analis (Coleoptera: Bruchidae) in gram Cicer arietinum during storage. The Nucleus 49 (1): 61–64.
Sattelle D.B., Pinnock R.D., Wafford K.A., David J.A. 1988. GABA receptors on the cell-body membrane of an identified insect motor neuron. Proceedings of the Royal Society B: Biological Sciences 232(1269): 443-456. DOI: 10.1098/rspb.1988.0006
Thiam A., Guèye M.T., Ndiaye I., Diop S.M., Ndiaye E.H.B., Fauconnier M.L., Lognay G. 2018. Effect of drying methods on the chemical composition of essential oils of Xylopia aethiopica fruits (Dunal) A. Richard (Annonaceae) from southern Senegal. American Journal of Essential Oils and Natural Products 6 (1): 25–30.
Thiam A., Gueye M.T., Sanghare C.H., Ndiaye E.H.B., Diop S.M., Cissokho P.S., Diop M.B., Ndiaye I., Fauconnier M.L. 2020. Chemical composition and anti-inflammatory activity of Apium graveolens var. dulce essential oils from Senegal. American Journal of Food Science and Technology 8 (6): 226–232. DOI: 10.12691/ajfst-8-6-1.
Go to article

Authors and Affiliations

Abdoulaye Thiam
1 2
ORCID: ORCID
Momar Talla Guèye
2
Cheikhna Hamala Sangharé
1 2
Papa Seyni Cissokho
2
Elhadji Barka Ndiaye
1
Serigne Mbacké Diop
1
Michel Barka Diop
3
Ibrahima Ndiaye
1
Marie Laure Fauconnier
4

  1. Department of Chemistry, Faculty of Sciences and Techniques, Cheikh Anta Diop University, Dakar, Senegal
  2. Laboratory of Phytosanitary Analyses, Institute of Food Technology, Dakar, Senegal
  3. Unit of Training and Research of Agronomic Sciences, Aquaculture and Food Technology (S2ATA), Gaston Berger University, Saint-Louis, Senegal
  4. General and Organic Chemistry Laboratory, Gembloux Agro-Bio-Tech University of Liege, Gembloux, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The phyllosphere refers to the entire aerial habitat of plants while phylloplane describes the entire leaf surface. The phylloplane provides a niche for diversified microbial communities and as such it is an important ecosystem both ecologically and economically. For many years, phylloplane dwellers have been studied as bio protectants and enhancers of growth in host plants. Plants and phylloplane-microbial-interactions result in increased fitness and productivity of agricultural crops. In this study, an attempt was made to compile previous studies in order to better understand the role of phylloplane microbiota in influencing the physiology of flora. We also proposed possible further research to explore molecular aspects of signaling mechanisms established by the phylloplane microbial community with their hosts which impact the latter’s physiology.
Go to article

Bibliography


Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: 10.1016/j.plantsci.2016.02.008
Ahmad P., Prasad M.N. 2011. Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science and Business Media. DOI: 10.1007/978-1-4614-0634-1
Aisyah S.N., Sulastri S., Retmi R., Yani R.H., Syafriani E., Syukriani L., Fatchiyah F., Bakhtiar A., Jamsari A. 2017. Suppression of Colletotrichum gloeosporioides by Indigenous Phyllobacterium and its compatibility with Rhizobacteria. Asian Journal of Plant Pathology 11 (3): 139–147. DOI: 10.3923/ajppaj.2017.139.147
Alam S.S., Sakamoto K., Amemiya Y., Inubushi K. 2010. Biocontrol of soil-borne Fusarium wilts of tomato and cabbage with a root-colonizing fungus, Penicillium sp. EU0013. p. 1508. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 Aug 2010, Brisbane, Australia.
Andrews J.H., Harris R.F. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology 38 (1): 145–180. DOI: https://doi.org/10.1146/annurev.phyto.38.1.145
Arnold A.E., Maynard Z., Gilbert G.S., Coley P.D., Kursar T.A. 2000. Are tropical fungal endophytes hyperdiverse? Ecology Letters 3 (4): 267–74. DOI: https://doi.org/10.1046/j.1461-0248.2000.00159.x
Atamna‐Ismaeel N., Finkel O.M., Glaser F., Sharon I., Schneider R., Post A.F., Spudich J.L., von Mering C., Vorholt J.A., Iluz D., Béjà O. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental Microbiology 14 (1): 140–146. DOI: 10.1111/j.1462-2920.2011.02554.x
Baiyee B., Ito S.I., Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology 106: 96–101. DOI: https://doi.org/10.1016/j.pmpp.2018.12.009
Barda O., Shalev O., Alster S., Buxdorf K., Gafni A., Levy M. 2015. Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Disease 99 (5): 621–626. DOI: http://dx.doi.org/10.1094/PDIS-04-14-0377-RE
Batool F., Rehman Y., Hasnain S. 2016. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science 9 (4): 313–322. DOI: 10.1080/21553769.2016.1256842
Berger S., Sinha A.K., Roitsch T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany 58 (15–16): 4019–4026. DOI: https://doi.org/10.1093/jxb/erm298
Bodenhausen N., Horton M.W., Bergelson J. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8 (2): e56329. DOI: https://doi.org/10.1371/journal.pone.0056329
Bowatte S., Newton P.C., Brock S., Theobald P., Luo D. 2015. Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. The ISME Journal 9 (1): 265–267. DOI: https://doi.org/10.1038/ismej.2014.118
Bowes G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell and Environment 14 (8): 795–806. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01443.x
Braun S.D., Hofmann J., Wensing A., Weingart H., Ullrich M.S., Spiteller D., Völksch B. 2010. In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. Journal of Phytopathology 158 (4): 288–295. DOI: https://doi.org/10.1111/j.1439-0434.2009.01612.x
Bringel F., Couée I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in Microbiology 6: 486. DOI: https://doi.org/10.3389/fmicb.2015.00486
Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V., Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838. DOI: https://doi.org/10.1146/annurev-arplant-050312-120106
Buxdorf K., Rahat I., Levy M. 2013. Pseudozyma aphidis induces ethylene-independent resistance in plants. Plant Signaling and Behavior 8 (11): e26273. DOI: 10.4161/psb.26273
Caulier S., Gillis A., Colau G., Licciardi F., Liépin M., Desoignies N., Modrie P., Legrève A., Mahillon J., Bragard C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology 9: 143. DOI: https://doi.org/10.3389/fmicb.2018.00143
Chaudhary D., Kumar R., Sihag K., Kumari A. 2017. Phyllospheric microflora and its impact on plant growth: A review. Agricultural Reviews 38 (1): 51–59. DOI: 10.18805/ag.v0iOF.7308
Chowdappa P., Kumar S.M., Lakshmi M.J., Upreti K.K. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65 (1): 109–117. DOI: 10.1016/j.biocontrol.2012.11.009
Conrath U., Pieterse C.M., Mauch-Mani B. 2002. Priming in plant–pathogen interactions. Trends in Plant Science 7 (5): 210–216. DOI: 10.1016/s1360-1385(02)02244-6
Dara K. 2019. Improving strawberry yields with biostimulants: a 2018–2019 study. eJournal of Entomology and Biologicals. [Available on: https://ucanr.edu/blogs/strawberries-vegetables/index.cfm?tagname=induced%20resistance]
Delaney T.P. 1997. Genetic dissection of acquired resistance to disease. Plant Physiology. 113 (1): 5. DOI: 10.1104/pp.113.1.5
Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., Von Mering C., Vorholt J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences 106 (38): 16428–16433. DOI: https://doi.org/10.1073/pnas.0905240106
Dey S., Wenig M., Langen G., Sharma S., Kugler K.G., Knappe C., Hause B., Bichlmeier M., Babaeizad V., Imani J., Janzik I. 2014. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiology 166 (4): 2133–2151. DOI: https://doi.org/10.1104/pp.114.249276
Di Mario R.J., Clayton H., Mukherjee A., Ludwig M., Moroney J.V. 2017. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Molecular Plant 10 (1): 30–46. DOI: 10.1016/j.molp.2016.09.001
Dong H., Li W., Zhang D., Tang W. 2003. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Protection 22 (1): 129–134. DOI: 10.1016/S0261-2194(02)00122-9
Dourado M.N., Aparecida Camargo Neves A., Santos D.S., Araújo W.L. 2015. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International. DOI: 10.1155/2015/909016
El-Sharkawy H.H., Rashad Y.M., Ibrahim S.A. 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology 103: 84–91. DOI: https://doi.org/10.1016/j.pmpp.2018.05.002
Enya J., Shinohara H., Yoshida S., Tsukiboshi T., Negishi H., Suyama K., Tsushima S. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecology 53 (4): 524–536. DOI: https://doi.org/10.1007/s00248-006-9085-1
Esitken A., Yildiz H.E., Ercisli S., Donmez M.F., Turan M., Gunes A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124 (1): 62–66. DOI: 10.1016/j.scienta.2009.12.012
Furnkranz M., Wanek W., Richter A., Abell G., Rasche F., Sessitsch A. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal 2 (5): 561–570. DOI: https://doi.org/10.1038/ismej.2008.14
Gafni A., Calderon C.E., Harris R., Buxdorf K., Dafa-Berger A., Zeilinger-Reichert E., Levy M. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science 6: 132. DOI: https://doi.org/10.3389/fpls.2015.00132
Gherbawy Y., El-Tayeb M., Maghraby T., Shebany Y., El-Deeb B. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60 (4): 319–333. DOI: 10.1556/AAgr.60.2012.4.3
Giri S., Pati B.R. 2004. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiologica et Immunologica Hungarica 51 (1–2): 47–56. DOI: 10.1556/AMicr.51.2004.1-2.3
Guerrieri R., Vanguelova E.I., Michalski G., Heaton T.H., Mencuccini M. 2015. Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. Global Change Biology 21 (12): 4613–4626. DOI: https://doi.org/10.1111/gcb.13018
Halfeld-Vieira B.D., Vieira Júnior J.R., Romeiro R.D., Silva H.S., Baracat-Pereira M.C. 2006. Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus. Pesquisa Agropecuaria Brasileira 41 (8): 1247–1252. DOI: https://doi.org/10.1590/S0100-204X2006000800006
Harish S., Saravanakumar D., Kamalakannan A., Vivekananthan R., Ebenezar E.G., Seetharaman K. 2007. Phylloplane microorganisms as a potential biocontrol agent against Helminthosporium oryzae Breda de Hann, the incitant of rice brown spot. Archives of Phytopathology and Plant Protection 40 (2): 148–157. DOI: https://doi.org/10.1080/03235400500383651
He C.Y., Hsiang T., Wolyn D.J. 2002. Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathology 51 (2): 225–230. DOI: https://doi.org/10.1046/j.1365-3059.2002.00682.x
Holland M.A. 2011. Nitrogen: give and take from phylloplane microbes. Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, London. 28: 217–230. DOI: https://doi.org/10.1002/9780470959404.ch10
Huang S., Millar A.H. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme. Current Opinion in Plant Biology 16 (3): 344–349. DOI: https://doi.org/10.1016/j.pbi.2013.02.007
Hudson G.S., Evans J.R., von Caemmerer S., Arvidsson Y.B., Andrews T.J. 1992. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiology 98 (1): 294–302. DOI: 10.1104/pp.98.1.294
Innerebner G., Knief C., Vorholt J.A. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77 (10): 3202–3210. DOI: 10.1128/AEM.00133-11
Jogaiah S., Shetty H.S., Ito S.I., Tran L.S. 2016. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiology and Biochemistry 105: 109–117. DOI: https://doi.org/10.1016/j.plaphy.2016.04.006
Jumpponen A., Jones K.L. 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist 186 (2): 496–513. DOI: https://doi.org/10.1111/j.1469-8137.2010.03197.x
Kamle M., Borah R., Bora H., Jaiswal A.K., Singh R.K., Kumar P. 2020. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. p. 457–470. In: “Fungal Biotechnology and Bioengineering” (Hesham A.E.-L., Upadhyay R.S., Sharma G.D., Manoharachary C., Gupta V.K., eds.). Springer International Publishing. DOI: 10.1007/978-3-030-41870-0
Kembel S.W., O’Connor T.K., Arnold H.K., Hubbell S.P., Wright S.J., Green J.L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. In: Proceedings of the National Academy of Sciences. 23 Sep 2014, USA, 111 (38): 13715-13720. DOI: https://doi.org/10.1073/pnas.1216057111
Kuberan T., Vidhyapallavi R.S, Balamurugan A., Nepolean P., Jayanthi R., Premkumar R. 2012. Isolation and biocontrol potential of phylloplane Trichoderma against Glomerella cingulata in tea. International Journal of Agricultural Technology 8 (3): 1039–1050.
Lindow S.E., Brandl M.T. 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology 69 (4): 1875–1883. DOI: 10.1128/AEM.69.4.1875-1883.2003
Majeau N., Coleman J.R. 1994. Correlation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiology 104 (4): 1393–1399. DOI: https://doi.org/10.1104/pp.104.4.1393
Manching H.C., Balint-Kurti P.J., Stapleton A.E. 2014. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science 5: 403. DOI: https://doi.org/10.3389/fpls.2014.00403
Marques A.P., Pires C., Moreira H., Rangel A.O., Castro P.M. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry 42 (8): 1229–1235. DOI: https://doi.org/10.1016/j.soilbio.2010.04.014
Mathivanan N., Prabavathy V.R., Vijayanandraj V.R. 2008. The effect of fungal secondary metabolites on bacterial and fungal pathogens. Secondary Metabolites in Soil Ecology. Soil Biology 14: 129–140.
Mazinani Z., Zamani M., Sardari S. 2017. Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicenna Journal of Medical Biotechnology 9 (1): 31.
Mitra J., Sahi A.N., Paul P.K. 2014. Phylloplane microfungal metabolite influences activity of RuBisCO. Archives of Phytopathology and Plant Protection 47 (5): 584–590. DOI: https://doi.org/10.1080/03235408.2013.814827
Mitra J., Sharma P.D., Paul P.K. 2019. Do phylloplane microfungi influence activity of Rubisco and Carbonic anhydrase. South African Journal of Botany 1 (124): 118–126. DOI: https://doi.org/10.1016/j.sajb.2019.04.033
Mohanty S.R., Dubey G., Ahirwar U., Patra A.K., Kollah B. 2016. Prospect of phyllosphere microbiota: a case study on bioenergy crop Jatropha Curcas. Plant-Microbe Interaction: An Approach to Sustainable Agriculture: 453–462.
Mwajita M.R., Murage H., Tani A., Kahangi E.M. 2013. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2 (1): 606. DOI: https://doi.org/10.1186/2193-1801-2-606
Nicot P.C. 2011. Classical and Augmentative Biological Control Against Diseases and Pests: Critical Status Analysis and Review of Factors Influencing Their Success. International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section (IOBC/WPRS), Europe.
O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236 (3): 765–779. DOI: 10.1007/s00425-012-1696-9
Ortega R.A., Mahnert A., Berg C., Müller H., Berg G. 2016. The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiology Ecology 92: 1–12. DOI: https://doi.org/10.1093/femsec/fiw173
Patel M., Kothari I.L., Mohan J.S. 2004. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium, derived elicitors. Indian Journal of Experimental Biology 42 (7): 728–731.
Paul P.K., Mitra J. 2013. Phyllosphere microbes influence Succinate dehydrogenase activity in mitochondria of tomato. p. 92. In: The 19th Australasian Plant Pathology Conference (APPS). 25–28 November 2013, Auckland, New Zealand, 186 pp.
Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
Qin S., Zhou W., Lyu D., Liu L. 2014. Effects of soil sterilization and biological agent inoculation on the root respiratory metabolism and plant growth of Cerasus sachalinensis Kom. Scientia Horticulturae 170: 189–195. DOI: https://doi.org/10.1016/j.scienta.2014.03.019
Rastogi G., Sbodio A., Tech J.J., Suslow T.V., Coaker G.L., Leveau J.H. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal 6 (10): 1812–1822. DOI: https://doi.org/10.1038/ismej.2012.32
Saleem B., Paul P.K. 2016. Leaf age correlation to phyllosphere, microbe-microbe, plant-microbe interactions on Solanum lycopersicum. Thesis. Amity University, India
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Shukla S., Sharma R.B. 2016. Diversity of surface mycoflora on Tinospora cordifolia. Indian Journal of Plant Science 5: 42–53.
Singh U.B., Malviya D., Singh S., Pradhan J.K., Singh B.P., Roy M., Imram M., Pathak N., Baisyal B.M., Rai J.P., Sarma B.K. 2016. Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research 192: 300–312. DOI: https://doi.org/10.1016/j.micres.2016.08.007
Sowndhararajan K., Marimuthu S., Manian S. 2013. Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO‐111 against blister blight disease of tea. Journal of Applied Microbiology 114 (1): 209–218. DOI: https://doi.org/10.1111/jam.12026
Stiefel P., Zambelli T., Vorholt J.A. 2013. Isolation of optically targeted single bacteria using FluidFM applied to aerobic anoxygenic phototrophs from the phyllosphere. Applied and Environmental Microbiology 79 (16): 4895–4905. DOI: 10.1128/AEM.01087-13
Stone B.W., Weingarten E.A., Jackson C.R. 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews 1 (2): 533–556. DOI: https://doi.org/10.1002/9781119312994.apr0614
Su P., Tan X., Li C., Zhang D., Cheng J.E., Zhang S., Zhou X., Yan Q., Peng J., Zhang Z., Liu Y. 2017. Photosynthetic bacterium Rhodopseudomonas palustris GJ‐22 induces systemic resistance against viruses. Microbial Biotechnology 10 (3): 612–624. DOI: 10.1111/1751-7915.12704
Suguna S., Parthasarathy S., Karthikeyan G. 2020. Induction of systemic resistant molecules in phylloplane of rice plants against Magnaporthe oryzae by Pseudomonas fluorescens. International Research Journal of Pure and Applied Chemistry 21 (3): 25–36. DOI: https://doi.org/10.9734/irjpac/2020/v21i330158
Sun P.F., Fang W.T., Shin L.Y., Wei J.Y., Fu S.F., Chou J.Y. 2014. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PloS One 9 (12): e114196. DOI: https://doi.org/10.1371/journal.pone.0114196
Sunderhaus S., Dudkina N.V., Jänsch L., Klodmann J., Heinemeyer J., Perales M., Zabaleta E., Boekema E.J., Braun H.P. 2006. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. Journal of Biological Chemistry 281 (10): 6482–6488. DOI: 10.1074/jbc.M511542200
Thakur S. 2016. Application of phylloplane fungi to manage the leaf spot of Rauwolfia serpentina caused by Alternaria alternata. International Journal of Life Sciences Scientific Research 2 (2): 163–172.
Toivonen P.M., Hodges D.M. 2011. Abiotic stress in harvested fruits and vegetables. p. 39–58. In: “Abiotic Stress in Plants-Mechanisms and Adaptations” (A. Shanker, ed.). InTech, China. DOI: 10.5772/22524
Toyota K., Shirai S. 2018. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens. Microbes and Environments 33 (4): 345–347. DOI: 10.1264/jsme2.ME3304rh
Turner T.R., James E.K., Poole P.S. 2013. The plant microbiome. Genome Biology 14 (6): 209. DOI: https://doi.org/10.1186/gb-2013-14-6-209
van Wees S.C., de Swart E.A., van Pelt J.A., van Loon L.C., Pieterse C.M. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 97 (15): 8711–8716. DOI: https://doi.org/10.1073/pnas.130425197
Voříšková J., Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal 7 (3): 477–486. DOI: https://doi.org/10.1038/ismej.2012.116
Wang L.F, Wang M., Zhang Y. 2014. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Tropical Plant Pathology 39 (3): 242–250. DOI: http://dx.doi.org/10.1590/S1982-56762014000300008
Watanabe K., Kohzu A., Suda W., Yamamura S., Takamatsu T., Takenaka A., Koshikawa M.K., Hayashi S., Watanabe M. 2016. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. Springer Plus 5: 1596. DOI: https://doi.org/10.1186/s40064-016-3286-y
Whipps J., Hand P., Pink D., Bending G.D. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology 105 (6): 1744–1755. DOI: https://doi.org/10.1111/j.1365-2672.2008.03906.x
Yadav R.K., Kakamanoli K., Vokou D. 2010. Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecoprint: An International Journal of Ecology 17: 47–52. DOI: https://doi.org/10.3126/eco.v17i0.4105
Yadav S.L., Mishra A.K., Dongre P.N., Singh R. 2011. Assessment of fungitoxicity of phylloplane fungi against Alternaria brassicae causing leaf spot of mustard. Journal of Agricultural Technology 7 (6): 1823–1831.
Zhou L.S., Tang K., Guo S.X. 2018. The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. International Journal of Molecular Sciences 19 (1): 270. DOI: https://doi.org/10.3390/ijms19010270
Go to article

Authors and Affiliations

Susmita Goswami
1
ORCID: ORCID
Navodit Goel
1
Rita Singh Majumdar
2

  1. Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
  2. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

During 2016–2017 surveys, carried out for phytoplasma diseases in ornamental plants in Chaharmahal and Bakhtiari provinces, Iran, found symptoms of virescence, phyllody, reduced size of leaves and flowers in columbine ( Aquilegia vulgaris). Total DNAs extracted from symptomatic and symptomless plants were tested for the presence of phytoplasma using P1/P7 and R16F2n/R16R2 primers in direct and nested PCR producing amplicons of about 1.8 and 1.2 kb, respectively, from all symptomatic A. vulgaris plants, but not from symptomless ones. The consensus sequence of the detected phytoplasma named Aquilegia phyllody (APh) was 100% identical with strains clustering to phytoplasmas enclosed in the 16SrI group as also confirmed by phylogenetic analyses. Both real and virtual restriction fragment length polymorphism analysis of R16F2n/R16R2 amplicons showed profiles that were identical to each other and indicated the affiliation of the APh phytoplasma to the 16SrI-R subgroup. This is the first report of a 16SrI-R phytoplasma associated with this A. vulgaris phyllody disease.
Go to article

Bibliography


Asghari Tazehkand S., Hosseini Pour A., Heydarnejad J., Massumi H., Azadvar M. 2010. Identification of phytoplasmas associated with cultivated and ornamental plants in Kerman province, Iran. Journal of Phytopathology 158: 713–720. DOI: https://doi.org/10.1111/j.1439-0434.2010.01682.x
Babaie G., Khatabi B., Bayat H., Rastgou M., Hosseini A., Salekdeh GH. 2007. Detection and characterization of phytoplasma infecting ornamental and weed plants in Iran. Journal of Phytopathology 155: 368–372. DOI: https://doi.org/10.1111/j.1439-0434.2007.01247.x
Bastida J.M., Alcántara J.M., Rey P.J., Vargas P., Herrera C.M. 2010. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Plant Systematics and Evolution 284: 171–185. DOI: https://doi.org/10.1007/s00606-009-0243-z
Bellardi M.G., Bertaccini A., Madhupriya, Rao G.P. 2018. Phytoplasma diseases in ornamental crops. p. 191–233. In: “Phytoplasmas: Plant Pathogenic Bacteria – I” (G.P. Rao, A. Bertaccini, N. Fiore, L. Liefting, eds.). Springer, Singapore.
Cieslinska M., Komorowska B., Stankiene J. 2006. Occurrence and identification of aster yellows related phytoplasma in strawberry in Poland and Lithuania. Acta Horticulturae 708: 141–146. DOI: 10.17660/ActaHortic.2006.708.22
Deng S., Hiruki C. 1991. Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiological Methods 14: 53–61. DOI: https://doi.org/10.1016/0167-7012(91)90007-D
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Fani S.R., Bolok Yazdi H.R., Raoufi D., Jadidi O., Bertaccini A. 2015a. Status of alfalfa witches’ broom phytoplasma disease in Iran. Phytopathogenic Mollicutes 5: 65–66.
Esmailzadeh Hosseini S.A., Salehi M., Khodakaramian G., Mirchenari S.M., Bertaccini A. 2015b. An up to date status of alfalfa witches’ broom disease in Iran. Phytopathogenic Mollicutes 5: 9–18.
Esmailzadeh Hosseini S.A., Salehi M., Salehi E. 2015c. First report of a 16SrI-B subgroup related phytoplasma associated with Eruca sativa phyllody in Iran. New Disease Reports 32: 22.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. 2016. Molecular identification and phylogenetic analysis of phytoplasmas associated with alfalfa witches’ broom diseases in the western areas of Iran. Phytopathogenic Mollicutes 6: 16–22. DOI: http://dx.doi.org/10.5958/2249-4677.2016.00003.7
Girsova N.V., Bottner-Parker K.D., Bogoutdinov D.Z., Kastalyeva T.B., Meshkov Y.I., Mozhaeva K.A., Lee I-M. 2017. Diverse phytoplasmas associated with leguminous crops in Russia. European Journal of Plant Pathology 149: 599–610. DOI: https://doi.org/10.1007/s10658-017-1209-6
Green M.R., Sambrook J. 2012. Molecular Cloning: a Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Gundersen D.E., Lee I-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer sets. Phytopathologia Mediterranea 35: 144–151.
Harju V.A., Skelton A.L., Monger W.A., Jarvis B., Mumford R.A. 2008. Identification of an X-disease (16SrIII) group phytoplasma (‘Candidatus Phytoplasma pruni’) infecting delphiniums in the UK. Plant Pathology 57: 769. DOI: https://doi.org/10.1111/j.1365-3059.2007.01808.x
Healey A., Furtado A., Cooper T., Henry R.J. 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10: 21. DOI: https://doi.org/10.1186/1746-4811-10-21
Jomantiene R., Maas J.L., Takeda F., Davis R.E. 2002. Molecular identification and classification of strawberry phylloid fruit phytoplasma in group 16SrI, new subgroup R. Plant Disease 86: 920. DOI: 10.1094/PDIS.2002.86.8.920C
Jomantiene R., Zhao Y., Lee I-M., Davis R.E. 2011. Phytoplasmas infecting cherry and lilac represent two distinct lineages having close evolutionary affinities with clover phyllody phytoplasma. European Journal of Plant Pathology 130: 97–107. DOI: https://doi.org/10.1007/s10658-010-9735-5
Kaminska M. 2008. Phytoplasma in ornamental plants. p. 195–218. In: “Characterization, Diagnosis and Management of Phytoplasmas” (N.A. Harrison, G.P. Rao, C. Marcone, eds.). Studium Press LLC, Texas, USA
Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution 33: 1870–1874. DOI: 10.1093/molbev/msw054
Lee I-M., Gundersen-Rindal D.E., Davis R.E., Bartoszyk I.M. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48: 1153–1169. DOI: https://doi.org/10.1099/00207713-48-4-1153
Noutsos C., Perera A.M., Nikolau B.J., Seaver S.M.D., Ware D.H. 2015. Metabolomic profiling of the nectars of Aquilegia pubescens and A. canadensis. PLoS One 10 (10): e0141384. DOI: https://doi.org/10.1371/journal.pone.0124501
Parrella G., Paltrinieri S., Botti S., Bertaccini A. 2008. Molecular identification of phytoplasmas from virescent ranunculus plants and from leafhoppers in southern Italian crops. Journal of Plant Pathology 90: 537–543.
Přibylová J., Petrzik K., Špak J. 2011. Association of aster yellows subgroup 16SrI-C phytoplasmas with a disease of Ribes rubrum. Bulletin of Insectology 64 (Supplement): S65-S66.
Rashidi M., Ghosta Y., Bahar M. 2010. Molecular identification of a phytoplasma associated with Russian olive witches’ broom in Iran. European Journal of Plant Pathology 127: 157–159. DOI: https://doi.org/10.1007/s10658-010-9589-x
Salehi M., Esmailzadeh Hosseini S.A., Salehi E. 2016. First report of a ‘Candidatus Phytoplasma asteris’ related phytoplasma associated with Eucalyptus little leaf disease in Iran. Journal of Plant Pathology 98: 175. DOI: http://dx.doi.org/10.4454/JPP.V98I1.054
Salehi M., Esmailzadeh Hosseini S.A., Salehi E. 2018. First report of a 'Candidatus Phytoplasma asteris'-related strain (16SrI-B) associated with Sonchus oleraceus (common sowthistle) phyllody disease in Iran. New Disease Reports 37: 6. DOI: 10.5197/j.2044-0588.2018.037.006
Samuitiene M., Navalinskiene M., Jomantiene R., Davis R.E. 2004. Molecular detection and characterization of phytoplasmas infecting columbine ( Aquilegia L.) plants. Biologia 2: 15–17.
Schneider B., Seemüller E., Smart C.D., Kirkpatrick B.C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. p. 369–380. In: “Molecular and Diagnostic Procedures in Mycoplasmology” (S. Razin, J.G. Tully, eds.). Academic Press. San Diego, CA, USA.
Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526. DOI: 10.1093/oxfordjournals.molbev.a040023
Zhao Y., Wei W., Lee I-M., Shao J., Suo X., Davis R.E. 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59: 2582–2593. DOI: 10.1099/ijs.0.010249-0
Go to article

Authors and Affiliations

Ghobad Babaei
1
ORCID: ORCID
Seyyed Alireza Esmaeilzadeh-Hosseini
2
Soudeh Davoodi
1
Assunta Bertaccini
3

  1. Plant Protection Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran
  2. Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran
  3. Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin, Bologna, Italy
Download PDF Download RIS Download Bibtex

Abstract

The seed is one of the most important inputs of agricultural products and its quality and health can be affected by seed-borne fungi. Seed-borne fungal pathogens are a major threat to black cumin production and cause considerable yield losses every year worldwide. The aim of this study was to identify seed-borne fungi, the effects of natural fungal infected seeds on some seed quality indicators, and also to investigate cell wall degrading enzymes (CWDEs), pathogenicity and aggressiveness of the isolates obtained from seeds. The constituents of essential oils (EOs) from seeds of Iranian and Syrian black cumin populations were identified and their effect on [isolated] seed-borne Fusarium isolates. A total of 17 isolates were identified based on morphological and molecular characteristics of Fusarium oxysporum and F. solani species. The results of the standard germination test showed that there was a significant difference between the studied seed populations in the germination and vigor indices. Our results indicated that most of the identified isolates were in the seed coat, while a few isolates of F. oxysporum were located in embryos. The results of the pathogenicity test showed that about 42% of the isolates were pathogenic and 58% of the isolates were non-pathogenic. Different levels of pathogenicity and aggressiveness were observed for various isolates of Fusarium species. All Fusarium isolates were not capable of producing CWDEs as pathogenicity factors. Analyzing the activity of CWDEs, including cellulase, pectinase, xylanase and lipase produced by the Fusarium isolates, revealed that activity levels of CWDEs are positive and are correlated with variations in pathogenicity and aggressiveness of seed-borne fungal isolates on seeds. The EOs were identified by gas chromatography-mass spectrometry and the major constituents were identified as ρ-cymene, trans-anethole, thymoquinone, limonene, carvacrol and α-thujene. The results showed that the compounds ρ-cymene, limonene, carvacrol, thymoquinone and transanethole had antifungal effects against F. oxysporum isolate. It seems that the percentage of carvacrol and limonene composition in the EOs components can affect the presence of the seed-borne Fusarium. This is the first report on the effect of EO compositions of black cumin seed populations on seed-borne Fusarium isolated from the same seeds. The findings of this research showed that the amounts and types of constituents of EOs of black cumin seed populations are different and they can affect the abundance of seed-borne fungi and their level of pathogenicity and aggressiveness.
Go to article

Bibliography


Abdel-Razik A.A. 1970. The parasitism of white Sclerotium cepivorum Berk, the incitant of white rot of onion. Ph.D. thesis, Faculty of Agriculture, Assiut University, Assiut, Egypt.
Adams R.P. 2017. Identification of Essential Oil Components by GAS Chromatography/ Massspectrometry. 5th ed. Gruver, TX USA, Texensis, 698 pp.
Ahamad Bustamam M.S., Hadithon K.A., Mediani A., Abas F., Rukayadi Y., Lajis N., Shaari K., Ismail I.S. 2017. Stability study of Algerian Nigella sativa seeds stored under different conditions. Journal of Analytical Methods in Chemistry 2017: 1–12. DOI: https://doi.org/10.1155/2017/7891434
Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A., Damanhouri Z.A., Anwar F. 2013. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine 3: 337–352. DOI: https://doi.org/10.1016/S2221-1691(13)60075-1
Ahmadian A., Shiri Y., Froozandeh M. 2015. Study of germination and seedling growth of black cumin (Nigella sativa L.) treated by hydro and osmopriming under salt stress conditions. Cercetari Agronomice in Moldova 2: 69–78.
Al-Sman M.K., Abo-Elyousr K.A.M., Eraky A., El-Zawahry A. 2019. Efficiency of Pseudomonas spp. based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. Archives of Phytopathology and Plant Protection 52: 1313–1325. DOI: https://doi.org/10.1080/03235408.2019.1707384
Amatulli M.T., Spadaro D., Gullino M.L., Garibaldi A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology 59: 839–844. DOI: https://doi.org/10.1111/j.1365-3059.2010.02319.x
Anonymous 2019. Agricultural Statistics. Volume 2. Ministry of Jihad-e-Agriculture, Programing and Economic, Statistics and Information Technology Office, 425 pp. (in Persian)
Browne R.A., Cooke B.M. 2005. A comparative assessment of potential components of partial disease resistance to Fusarium head blight using a detached leaf assay of wheat, barley and oats. European Journal of Plant Pathology 112: 247–258. DOI: https://doi.org/10.1007/s10658-005-2077-z
Chaieb K., Kouidhi B., Jrah H., Mahdouani K., Bakhrouf A. 2011. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary Medicine and Therapies 1: 29. DOI: https://doi.org/10.1186/1472-6882-11-29
Cho Y., Kim K.H., Rota M.L., Scott D., Santopietro G., Callihan M., Mitchell T.K., Lawrenc C.B. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Molecular Microbiology 72: 1316–1333. DOI: https://doi.org/10.1111/j.1365-2958.2009.06689.x
Chutia M., Deka Bhuyan P., Pathak M.G., Sarma T.C., Boruah P. 2009. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from
North East India. LWT-Food. Science and Technology 42: 777–780. DOI: https://doi.org/10.1016/j.lwt.2008.09.015
Colowich S.P. 1995. Methods in Enzymology. Academic Prees Inc., London.
Dambolena J., Lopez A., Canepa M., Theumer M., Zygadlo J. 2008. Rubinstein, H. Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon 51: 37–44. DOI: https://doi.org/10.1016/j.toxicon.2007.07.005
Delgado-Ortiz J.C., Ochoa-Fuentes Y.M., Cerna-Chávez E., Beltrán-Beache M., Rodríguez-Guerra R., Aguirre-Uribe L.A., Vázquez-Martínezc O. 2016. Fusarium species associated with basal rot of garlic in North. Central Mexico and its pathogenicity. Revista Argentina de Microbiología 48: 222–228. DOI: https://doi.org/10.1016/j.ram.2016.04.003
Elwakil M.A., Ghoneem K. 1999. Detection and location of seed-borne fungi of black cumin and their transmission in seedlings. Pakistan Journal of Biological Sciences 2: 559–564. DOI: 10.3923/pjbs.1999.559.564
Fatima S., Khot Y.C. 2015. Studies on fungal population of cumin (Nigella sativa L.) from different parts of Marathwada. Journal of Multidisciplinary Research 2: 25–31.
Gerige S.J., Yadav M.K.G., Rao M., Ramanjaneyulu. 2009. GC-MS analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Brazilian Archives of Biology and Technology 52: 1189–1192. DOI: https://doi.org/10.1590/S1516-89132009000500016
Ghiyasi M., Moghaddam S.S., Amirnia R., Damalas C.A. 2019. Chemical priming with salt and urea improves germination and seedling growth of black cumin (Nigella sativa L.) under osmotic stress. Journal of Plant Growth Regulation 38: 1170–1178. DOI: https://doi.org/10.1007/s00344-019-09922-z
Gibson D.M., King B.C., Hayes M.L., Bergstrom G.C. 2011. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Current Opinion in Microbiology 14: 264–270. DOI: https://doi.org/10.1016/j.mib.2011.04.002
Hassani F., Zare L., Khaledi N. 2019. Evaluation of germination and vigor indices associated with fusarium-infected seeds in pre-basic seeds wheat fields. Journal of Plant Protection Research 59: 69–85. DOI: https://doi.org/10.24425/jppr.2019.126037
Huang Y., Zhao J., Zhou L., Wang J., Gong Y., Chen X., Guo Z., Qi Wang Q., Jiang W. 2010. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15: 7558–7569. DOI: https://doi.org/10.3390/molecules15117558
Hubballi M., Sornakili A., Anand S.N.T., Raguchander T. 2011. Virulence of Alternaria alternata infecting noni associated with production of cell wall degrading enzymes. Journal of Plant Protection Research 51: 87–92. DOI: https://doi.org/10.2478/v10045-011-0016-x
Isah T. 2019. Stress and defense responses in plant secondary metabolites production. Biological Research 52: 39. DOI: https://doi.org/10.1186/s40659-019-0246-3
Islam N.F., Borthakur S.K. 2012. Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology and Quarantine 2: 75–85. DOI: https://doi.org/10.5943/ppq/2/1/11
ISTA. 1986. International Seed Testing Association.1986. Handbook on Seed Sampling. ISTA, Zurich, Switzerland, 61 pp.
ISTA. 2013. International Seed Testing Association. 2013. The germination test. In: “International Rules for Seed Testing”. ISTA, Bassersdorf, Switzerland, 56 pp.
Karakaya A, Erzurum K. 2002. Wilt disease of Nigella sativa in Turkey. Journal of Turkish Phytopathology 31: 43–47.
Khaledi N., Hassani F. 2018. Antifungal activity of the essential oil of Bunium persicum and its constituents on growth and pathogenesis of Colletotrichum lindemuthianum. Journal of Plant Protection Research 58: 431–441. DOI: https://doi.org/10.24425/jppr.2018.124646
Khaledi N., Taheri P., Falahati-Rastegar M. 2017. Identification, virulence factors characterization and analysis virulence together with aggressiveness of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147: 897–918. DOI: https://doi.org/10.1007/s10658-016-1059-7
Khanna S., Gauri A. 1993. Regulation, purification, and properties of xylanase from Cellulomonas fimi. Enzyme and Microbial Technology 15: 990–995. DOI: https://doi.org/10.1016/0141-0229(93)90177-4
Kikot G.E., Hours R.A., Alconada T.M. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology 49: 231–241. DOI: https://doi.org/10.1002/jobm.200800231
Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788–8795. DOI: https://doi.org/10.1016/j.biortech.2008.04.048
Lannou C. 2012. Variation and selection of quantitative traits in plant pathogens. Annual Review of Phytopathology 50: 319–338. DOI: https://doi.org/10.1146/annurev-phyto-081211-173031
Leslie J.F., Summerell B.A. 2006. The Fusarium Laboratory Manual. 1st ed. Blackwell Publishing Ltd; Oxford, London.
MacMillan J.D., Voughin R.H. 1964. Purification and properties of a polyglacturonic acid-transeliminase produced by Clastridium multiformentans. Biochemistry 3: 564–572.
Maden S., Singh D., Mathur S.B., Neergard P. 1975. Detection and location of seed borne inoculum of Ascochyta rabei and its transmission in chickpea. Seed Science and Technology 3: 667–671.
Mahapatra S.S., Arya A., Kesarwani A., Verma O. 2019. Influence on oilseeds and legume seed physiology under insect pest and pathogenic infestation. Journal of Pharmacognosy and Phytochemistry 8: 671–676. DOI: http://dx.doi.org/10.3329/bjar.v39i2.20429
Mahmoudvand H., Sepahvand A., Jahanbakhsh S., Ezatpour B., Mousavi S.A.A. 2014. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. Journal of Medical Mycology 24: 155–161. DOI: https://doi.org/10.1016/j.mycmed.2014.06.048
Marei G.I.K., Rasoul M.A.A., Abdelgaleil S.A. 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology 103: 56–61. DOI: https://doi.org/10.1016/j.pestbp.2012.03.004
Michielse C.B., Rep M. 2009. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10: 311–324. DOI: https://doi.org/10.1111/j.1364-3703.2009.00538.x
Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428. DOI: https://doi.org/10.1021/ac60147a030
Minooeian Haghighi M.H., Khosravi A.R. 2013. Inhibition and destruction effects of Cuminum cyminum, Ziziphora clinopodioides and Nigella sativa essences on Aspergillus cells. Journal of Babol University of Medical Sciences 15: 25–35.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218: 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohamed A.S.K., Kamal A.A.M., Amal E., Aida E. 2017. Isolation, identification and biomanagement of root rot of black cumin (Nigella sativa) using selected bacterial antagonists. International Journal of Phytopathology 6: 47–56. DOI: https://doi.org/10.1080/03235408.2019.1707384
Mohammadnejad Ganji S.M., Moradi H., Ghanbari A., Akbarzadeh M. 2017. Quantity and quality of secondary metabolites in lavender plant under the influence of ecological factors. Nova Biologica Reperta 4: 166–172. DOI: https://doi.org/10.21859/acadpub.nbr.4.2.166
Mojab F., Nikavar B., Javidnia K., Roodgar Amoli M.A. 2003. Chemical composition of essential oil and black seed oil. Journal of Medicinal Plants 6: 21–26.
Müller M.E.H., Steier I., Köppen R., Siegel D., Proske M., Korn U., Koch M. 2012. Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. Journal of Applied Microbiology 113: 874–887. DOI: https://doi.org/10.1111/j.1365-2672.2012.05388.x
Nautiyal P.C. 2009. Seed and seedling vigor traits in groundnut (Arachis hypogaea L.). Seed Science and Technology 37: 721–735. DOI: https://doi.org/10.15258/sst.2009.37.3.19
Noda J., Brito N., Gonzalez C. 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biology 10: 38. DOI: https://doi.org/10.1186/1471-2229-10-38
Ortega L.M., Kikot G.E., Astoreca A.L., Alconada T.M. 2013. Screening of Fusarium graminearum isolates for enzymes extracellular and deoxynivalenol production. Journal of Mycology 2013: 1–7. DOI: https://doi.org/10.1155/2013/358140
Ozdemir N., Kantekin-Erdogan M.N., Tat T., Tekin A. 2018. Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. Journal of Food Science and Technology 55: 1562-1568. DOI: https://doi.org/10.1007/s13197-018-3075-4
Paccanaro M.C., Sella L., Castiglioni C., Giacomello F., Martínez-Rocha A.L., D’Ovidio R., Schäfer W., Favaron F. 2017. Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Molecular Plant-Microbe Interactions 30: 886–895. DOI: https://doi.org/10.1094/MPMI-07-17-0179-R
Papastylianou P., Bakogianni N.N., Travlos I., Roussis I. 2018. Sensitivity of seed germination to salt stress in black cumin (Nigella sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46: 202–205. DOI: https://doi.org/10.15835/nbha46110861
Pareek V., Varma R. 2015. Fusarium solani a dominant seed borne pathogen in seeds of cluster bean grown in Rajasthan. Bioscience Biotechnology Research Communications 8: 29–34.
Pathak N., Zaidi R.K. 2013. Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection 46: 389–401. DOI: https://doi.org/10.1080/03235408.2012.741978
Rezaee S., Gharanjik S., Mojerlou S. 2018. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. Journal of Crop Protection 7: 161–170.
Plodpai P., Chuenchitt S., Petcharat V., Chakthong S., Voravuthikunchai S.P. 2013. Anti-Rhizoctonia solani activity by Desmos chinensis extracts and its mechanism of action. Crop Protection 43: 65–71. DOI: https://doi.org/10.1016/j.cropro.2012.09.004
Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. 2000. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant-Microbe Interactions 13: 159–169. DOI: https://doi.org/10.1094/MPMI.2000.13.2.159
Purahong W., Alkadri D., Nipoti P., Pisi A, Lemmens M., Prodi A. 2012. Validation of a modified Petri-dish test to quantify aggressiveness of Fusarium graminearum in durum wheat. European Journal of Plant Pathology 132: 381–391. DOI: https://doi.org/10.1007/s10658-011-9883-2
Rahmouni A., Saidi R., Khaddor M., Pinto E., Joaquim Carlos Gomes E.D.S., Maouni A. 2019. Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean Journal for Environmental Integration 4: 27. DOI: https://doi.org/10.1007/s41207-019-0117-x
Rammanee K., Hongpattarakere T. 2011. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology 4: 1050–1059. DOI: https://doi.org/10.1007/s11947-010-0507-1
Sacristan S., García-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology 9: 369–384. DOI: https://doi.org/10.1111/j.1364-3703.2007.00460.x
Singh J., Shikha S.S., Sinha A., Bose B. 2011. Studies on seed mycoflora of wheat ( Triticum aestivum L.) treated with potassium nitrate and its effect on germination during storage. Research Journal of Seed Science 4: 148–156. DOI: https://doi.org/10.3923/rjss.2011.148.156
Singh P., Shukla R., Prakash B., Kumar A., Singh S., Mishra P.K., Dubey N.K. 2010. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm, and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology 48: 1734–1740. DOI: https://doi.org/10.1016/j.fct.2010.04.001
Sitara U., Niaz I., Naseem J., Sultana N. 2008. Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pakistan Journal of Botany 40: 409–414.
Suwandi S., Akino S., Kondo N. 2018. Enhanced virulence of Fusarium species associated with spear rot of oil palm following recovery from osmotic stress. Mycology 9: 20–28. DOI: https://doi.org/10.1080/21501203.2017.1336497
Thompson D.P. 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81 (1): 151–153. DOI: https://doi.org/10.2307/3759462
Underwood W. 2012. The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science 85: 1–6. DOI: https://doi.org/10.3389/fpls.2012.00085
Upasani M.L., Limaye B.M., Gurjar G.S., Kasibhatla S.M., Joshi R.R., Kadoo N.Y., Gupta V.S. 2017. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Scientific Reports 7: 7746. DOI: https://doi.org/10.1038/s41598-017-07114-x
Van Hung P., Chi P.T.L., Phi N.T.L. 2013. Comparison of antifungal activities of Vietnamese citrus essential oils. Natural Product Research 27: 506–508. DOI: https://doi.org/10.1080/14786419.2012.706293
Wajs A., Bonikowski R., Kalemba D. 2008. Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour and Fragrance Journal 23: 126–132. DOI: https://doi.org/10.1002/ffj.1866
Wanyoike W.M., Kang Z., Buchenauer H. 2002. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat head. European Journal of Plant Pathology 108: 803–810. DOI: https://doi.org/10.1023/A:1020847216155
Wood T.M., Bhat M. 1988. Methods for measuring cellulase activities. Methods Enzymol 160: 87–112. DOI: https://doi.org/10.1016/0076-6879(88)60109-1
Go to article

Authors and Affiliations

Nima Khaledi
1
Farshid Hassani
1

  1. Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt, incited by Fusarium oxysporum f. sp. lycopersici (FOL), causes serious production losses of tomato ( Solanum lycopersicum L.) plants. Biological control, using an antagonistic of Trichoderma species, is a bio-rationale and an alternative method to synthetic pesticides against most phytopathogens. The present study was undertaken to evaluate the effects of T. harzianum and/or T. viride in reducing Fusarium wilt and to determine the relationship between disease severity and plant growth promoting traits of these species. Trichoderma viride exhibited better phosphate solubilization and production of cellulases, ligninases, chitinases, proteases, hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA) than T. harzianum. For field assessment, five treatments with three replicates were used. The field was inoculated with the wilt fungus (FOL). Both Trichoderma spp. used were applied as a seed treatment, mixed in the soil, and FOL inoculated soil served as the untreated control. During the two consecutive years, seed treatment with T. viride exhibited the least disease severity, the highest physiological activity, the highest biochemical and antioxidant contents, and tomato plants treated with it exhibited the best growth and yield. It was concluded that Trichoderma viride can potentially be used to reduce Fusarium wilt and promote plant growth and yield in commercial tomato production.
Go to article

Bibliography


Abd-El-Khair H., Elshahawy I.E., Haggag H.K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bulletin of the National Research Centre 43 (1): 19. DOI: https://doi.org/10.1186/s42269-019-0062-5
Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S.P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: https://doi.org/10.1016/j.plantsci.2016.02.008
Ahanger M.A., Tyagi S.R., Wani M.R., Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. p. 25–55. In: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment (P. Ahmad, M. Wani, eds.). Springer, New York, USA. DOI: https://doi.org/10.1007/978-1-4614-8591-9_2
Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26 (1):1–20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6: 868. DOI: https://doi.org/10.3389/fpls.2015.00868
Ahmed M. 2011. Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian Journal of Research 5: 35–38.
Al-Ani L.K.T. 2018. Trichoderma: beneficial role in sustainable agriculture by plant disease management. “Plant Microbiome: Stress Response 5: 105–126. DOI: https://doi.org/10.1007/978-981-10-5514-0_5
Antoun H., Kloepper J.W. 2001. Plant growth-promoting rhizobacteria (PGPR). p. 1477–1480. In: “Encyclopedia of genetics” (S. Brenner, J.F. Miller, eds.). Academic Press, New York, USA. DOI: https://doi.org/10.1006/rwgn.2001.1636
Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.
Blumer C., Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173 (3): 170–177. DOI: https://doi.org/10.1007/s002039900127
Castano R., Borrero C., Trillas M.I., Avilés M. 2013. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 58 (1): 105–116. DOI: https://doi.org/10.1007/s10526-012-9465-z
Chaves-Gómez J.L., Chavez-Arias C.C., Cotes Prado A.M., Gómez-Caro S., Restrepo-Díaz H. 2019. Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Disease 104 (2): 388–397. DOI: https://doi.org/10.1094/pdis-03-19-0466-re
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48 (1): 37–43. DOI: https://doi.org/10.1007/BF02825358
Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. 2015. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation 34 (2): 425–432. DOI: http://dx.doi.org/10.1007/s00344-014-9471-8
de Rodríguez D.J., Angulo-Sánchez J.L., Hernández-Castillo F.D. 2006. An overview of the antimicrobial properties of Mexican medicinal plants. Advances in Phytomedicine 3: 325–377. DOI: https://doi.org/10.1016/s1572-557x(06)03014-5
Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. International Journal of Biological Macromolecules 134: 113–121. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.177
Ehmann A. 1977. The Van Urk-Salkowski reagent – a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132 (2): 267–276. DOI: https://doi.org/10.1016/s0021-9673(00)89300-0
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3 (2): 561–563. DOI: https://doi.org/10.1128/ec.3.2.561-563.2004
Elshahawy I.E., El-Mohamady R.S. 2019. Biological control of Pythium damping-off and root-rot of tomato using Trichoderma isolates employed alone or in combinations. Journal of Plant Pathology 101 (3): 597–608. DOI: https://doi.org/10.1007/s42161-019-00248-z
Fang-Fang X., Ming-Fu G., Zhao-Ping H., Ling-Chao F. 2017. Identification of Trichoderma strain M2 and related growth promoting effects on Brassica chinensis L. International Journal of Agricultural Resources 34 (1): 80.
Fish W.W., Perkins-Veazie P., Collins J.K. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15 (3): 309–317. DOI: https://doi.org/10.1006/jfca.2002.1069.
Harikrushana P., Ramchandra S., Shah K.R. 2014. Study of wilt producing Fusarium spp. from tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences 3: 854–858. https://www.researchgatenet/publication/265793287_Original_Research_Article_Study_of_wilt_producing_Fusarium_sp_from_tomato_Lycopersicon_esculentum_Mill
Harish S., Kavino M., Kumar N., Saravanakumar D., Soorianathasundaram K., Samiyappan R. 2008. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Applied Soil Ecology 39 (2): 187–200. DOI: https://doi.org/10.1016/j.apsoil.2007.12.006
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194. DOI: https://doi.org/10.1094/phyto-96-0190
Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. 2012. Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158 (1): 1–2. DOI: https://doi.org/10.1099/mic.0.056424-0
Hasan Z.A.E., Mohd Zainudin N.A.I., Aris A., Ibrahim M.H., Yusof M.T. 2020. Biocontrol efficacy of Trichoderma asperellum‐enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology 129 (4): 991–1003. DOI: https://doi.org/10.1111/jam.14674
Hashem A., Abd_Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI: https://doi.org/10.3389/fmicb.2016.01089
Hiscox J.D., Israelstam G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12): 1332–1334. DOI: https://doi.org/10.1139/b80-044
Hsu S.C., Lockwood J.L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology 29 (3): 422–426. DOI: https://doi.org/10.1128/aem.29.3.422-426.1975
Huang C.H., Roberts P.D., Datnoff L.E. 2012. Fusarium diseases of tomato. p. 145–158. In: “Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. APS Press, St. Paul, USA.
Jamil A., Ashraf S. 2020. Utilization of chemical fungicides in managing the wilt disease of chickpea caused by Fusarium oxysporum f. sp. ciceri. Archives of Phytopathology and Plant Protection 53 (17–18): 876–898. DOI: https://doi.org/10.1080/03235408.2020.1803705
Jamil A., Musheer N., Ashraf S. 2020. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. Journal of Plant Diseases and Protection. (In press) DOI: https://doi.org/10.1007/s41348-020-00383-1
Jangir M., Sharma S., Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 138: 104069. DOI: https://doi.org/10.1016/j.biocontrol.2019.104069
Jogaiah S., Abdelrahman M., Tran L.S.P., Shin-ichi I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64 (12): 3829–3842. DOI: https://doi.org/10.1093/jxb/ert212
Kapur A., Hasković A., Čopra-Janićijević A., Klepo L., Topčagić A., Tahirović I., Sofić E. 2012. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 38 (4): 39–42.
Kausar H., Sariah M., Saud H.M., Alam M.Z., Ismail M.R. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22 (2): 367–375. DOI: https://doi.org/10.1007/s10532-010-9407-3
Khare E., Kumar S., Kim K. 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environmental Sustainability 1 (1): 39–47. DOI: https://doi.org/10.1007/s42398-018-0022-2
Khoshmanzar E., Aliasgharzad N., Neyshabouri M.R., Khoshru B., Arzanlou M., Lajayer B.A. 2019. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2): 869–878. DOI: https://doi.org/10.1007/s13762-019-02405-4
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8: 114–124.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI: https://doi.org/10.1007/s10658-014-0560-0
Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai S.M., Azevedo J.L. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira 43 (4): 521–528. DOI: https://doi.org/10.1590/s0100-204x2008000400011
Li R., Chen W., Cai F., Zhao Z., Gao R., Long X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. Journal of Nanjing Agricultural University 40 (3): 464–472.
Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275–282. DOI: https://doi.org/10.1016/j.cropro.2017.03.021
López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123. DOI: https://doi.org/10.1016/j.scienta.2015.08.043
Lopez-Mondejar R., Bernal-Vicente A., Ros M., Tittarelli F., Canali S., Intrigiolo F., Pascual J.A. 2010. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology 101 (10): 3718–3723. DOI: https://doi.org/10.1016/j.biortech.2009.12.102
Luo Y., Teng Y., Luo X.Q., Li Z.H.G. 2016. Development of wettable powder of Trichoderma reesei FS10-C and its plant growth-promoting effects. Biotechnology Bulletin 32: 194–199.
Macías-Rodríguez L., Guzmán-Gómez A., García-Juárez P., Contreras-Cornejo H.A. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology 94 (9): 137. DOI: https://doi.org/10.1093/femsec/fiy137
Madhavan S., Paranidharan V., Velazhahan R. 2011. Foliar application of Burkholderia spp. strain TNAU-1 leads to activation of defense responses in chilli (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23 (4): 261–266. DOI: https://doi.org/10.1590/s1677-04202011000400003
Marzano M., Gallo A., Altomare C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control 67 (3): 397–408. DOI: https://doi.org/10.1016/j.biocontrol.2013.09.008
McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI: https://doi.org/10.1016/j.cropro.2015.02.021
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI: https://doi.org/10.1016/s2095-3119(18)62057-x
Mishra A., Singh S.P., Mahfooz S., Singh S.P., Bhattacharya A., Mishra N., Nautiyal C.S. 2018. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Applied Environmental Microbiology 84 (8): e0284517. DOI: https://doi.org/10.1128/aem.02845-17
Molla A.H., Haque M.M., Haque M.A., Ilias G.N.M. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1 (3): 265–272. DOI: https://doi.org/10.1007/s40003-012-0025-7
Mona S.A., Hashem A., Abd_Allah E.F., Alqarawi A.A., Soliman D.W.K., Wirth S., Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture 16 (8): 1751–1757. DOI: https://doi.org/10.1016/s2095-3119(17)61695-2
Ng L.C., Ngadin A., Azhari M., Zahari N.A. 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9 (2): 46–58. DOI: https://doi.org/10.3923/ajppaj.2015.46.58
Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228: 71–78. DOI: https://doi.org/10.1016/j.plantsci.2014.03.005
Nielsen P., Sørensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology 22 (3): 183–192. DOI: https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
Noori M.S., Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas spp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology and Microbiology 3 (2): 1–4. DOI: https://doi.org/10.4172/2157-7471.1000120
Otieno N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI: https://doi.org/10.3389/fmicb.2015.00745
Paramanandham P., Rajkumari J., Pattnaik S., Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 23 (4): 294–303. DOI: https://doi.org/10.1080/19315260.2016.1271850
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70 (1): 127–131. DOI: https://doi.org/10.1016/j.mimet.2007.03.023
Qi W., Zhao L. 2013. Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology 53 (4): 355–364. DOI: https://doi.org/10.1002/jobm.201200031
Ramaiah A.K., Garampalli R.K.H. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian Journal of Plant Science & Research 5 (1): 22–27.
Rao W.V.B.S., Sinha M.K. 1963. Phosphate dissolving organisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences 33: 272–278.
Riker A.J., Riker R.S. 1936. Introduction to Research on Plant Diseases. John S Swift, St. Louis, USA.
Rudresh D.L., Shivaprakash M.K., Prasad R.D. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 51 (3): 217–222. DOI: https://doi.org/10.1139/w04-127
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: https://doi.org/10.5943/mycosphere /3/4/14
Sallam N.M., Eraky A.M., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46 (4): 4463–4470. DOI: https://doi.org/10.1007/s11033-019-04901-9
Sanoubar R., Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. European Journal of Biological Research 7 (4): 299–308.
Sawant S.D., Sawant I.S. 2010. Improving the shelf life of grapes by pre-harvest treatment with Trichoderma harzianum 5R. Journal of Eco-Friendly Agriculture 5 (2): 179–182.
Schoffelmeer E.A., Klis F.M., Sietsma J.H., Cornelissen B.J. 1999. The cell wall of Fusarium oxysporum. Fungal Genetics and Biology 27 (2–3): 275–282.
Schwyn R., Neilands J.B. 1987. Universal chemical assay for detection and estimation of siderophores. Analytical Biochemistry 160: 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sharma J.P., Kumar S., Bikash D. 2012. Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Indian Phytopathology 65 (3): 264–267.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Soesanto L., Utami D.S., Rahayuniati R.F. 2011. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Canadian Journal of Science and Industrial Research 2: 294–306.
Srivastava R., Khalid A., Singh U.S., Sharma A.K. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31. DOI: https://doi.org/10.1016/j.biocontrol.2009.11.012
Surekha C.H., Neelapu N.R.R., Prasad B.S., Ganesh P.S. 2014. Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. International Journal of Agricultural Science Research 4 (4): 31–40.
Verma P., Yadav, A.N., Kumar V., Singh D.P., Saxena A.K, 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. p. 543–580. In: “Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, Switzerland. DOI: https://doi.org/10.1007/978-981-10-6593-4_22
Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., Manganiello G. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8 (1): 127–39. DOI: https://doi.org/10.2174/1874437001408010127
Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. 2013. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water, Air, & Soil Pollution 224 (12): 1–9. DOI: https://doi.org/10.1007/s11270-013-1703-1
Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8 (1): 71–126. DOI: https://doi.org/10.2174/1874437001408010071
Yadav A.N., Kumar V., Dhaliwal H.S., Prasad R., Saxena A.K. 2018. Microbiome in crops: diversity, distribution, and potential role in crop improvement. p. 305–332. In: “Crop Improvement Through Microbial Biotechnology” (A.A. Rastegari, N. Yadav, A.N. Yadav, eds.). Elsevier. DOI: https://doi. org/10.1016/B978-0-444-63987-5.00015-3
Zaim S., Bekkar A.A., Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51 (3–4): 217–226. DOI: https://doi.org/10.1080/03235408.2018.1447896
Zehra A., Meena M., Dubey M.K., Aamir M., Upadhyay R.S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Brazilian Journal of Botany 40 (3): 651–664. DOI: https://doi.org/10.1007/s40415-017-0382-3
Zhang F., Ge H., Zhang F., Guo N., Wang Y., Chen L., Ji X., Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry 100: 64–74. DOI: https://doi.org/10.1016/j.plaphy.2015.12.017
Zieslin N., Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology Biochemistry 31 (3): 333–339.
Go to article

Authors and Affiliations

Arshi Jamil
1

  1. Department of Plant Protection, Aligarh Muslim University, Aligarh, India
Download PDF Download RIS Download Bibtex

Abstract

It has already been well established that long exposure to low doses of pesticidesis linked to consumer risks. So, this study purposed to investigate the amounts of pesticide residues and potential health risks associated with them. The risk assessment was determined by two methods: 1. Pesticide toxicity index (PTI) depending on the maximum residue limit (MRL) to calculate the hazard quotient (HQ); 2. Health risk assessment (HR) using acceptable daily intake (ADI) and estimated daily intake (EDI) to calculate the health index (HI). Pesticide residues were estimated in 176samples of the most popularly consumed vegetables collected from major retailers and markets in Dakahlia, Egypt (during 2018). There were 111 samples contaminated with pesticide residues (63.1%), of which 29 samples (16.48%) were higher than the maximum residue limits (MRL).Residues of 23 compounds were found in the analyzed samples, of which chlorpyrifos was the most frequentin 33 samples (18.75%);while cypermethrin was the lowest (detected in one sample). According to WHO toxicity classification, 12 of the detected pesticides were moderately hazardous (class II), seven pesticides belonged to class III (slightly hazardous), three compounds were found in class U (unlikely to pose an acute hazard with normal use), while carbofuran is a highly toxic compound (class Ib). Also, the obtained data revealed that, the HI’s for the individual pesticides ranged from 0.0018 to 64.0% of ADI indicates no risk of adverse effects following exposure to the individual pesticides. The cumulative exposure amounts (PTI values) ranged from 1.58 in snake cucumber to 128.44 in potato tubers, indicating that, the combined risk index of pesticide residues was a significant health risk for consumers according to the individual risk index.It can be concluded that there is a need for strict regulation and regular monitoring of pesticide residues in foodstuff for consumers’ health protection.
Go to article

Bibliography


Akoto O., Azuure A.A., Adotey K.D. 2016. Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications. SpringerPlus 5: 1849. DOI: https://doi.org/10.1186/s40064-016-3544-z
Bajwa U., Sandhu K.S. 2014. Effect of handling and processing on pesticide residues in food – A review. Journal of Food Science and Technology 51: 201–220. DOI: https://doi.org/10.1007/s13197-011-0499-5
Belden J.B., Gilliom R.J., Martin J.D., Lydy M.J. 2007. Relative toxicity and occurrence patterns of pesticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production. Integrated Environmental Assessment and Management 2007 (3): 90–100.
Chaikasem S., Roi-et Na. V. 2020. Health risk assessment of pesticide residues in vegetables from river basin area. Applied Environmental Research 42 (2): 46–61. DOI: https://doi.org/10.35762/AER.2020.42.2.4
Claeys W.L., Jean-Francois S., Bragard C., Maghuin-Rogister G., Luc P., Schiffers B. 2011. Exposure of several Belgianconsumer groups to pesticide residues through fresh fruitand vegetable consumption. Food Control 22 (3–4): 508–516. DOI: https://doi.org/10.1016/j.foodcont.2010.09.037
CAC. 1993.Codex Alimentarius Commission. Joint FAO/WHO Food Standards Program, Volume 2, 391 pp.
Dragus A., Beldean-Galea M.S., Mihaiescu R., Mihaiescu T., Ristoiu R. 2012. Assessing impacts of triazine pesticides usein agriculture over the well water quality. Environmental Engineering and Management Journal 11: 319–323.
EU. 2016. The 2016 European Union report on pesticide residues in food. Scientific report. EFSA Journal 2018. DOI: https://doi.org/10.2903/j.efsa.2018.5348
EU. 2020. European Commission (EU): EU Pesticide Database (Online) Available from: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/? Event =pesticide residue. Current MRL& language = EN&pestResidueId =56 [Accessed 15 Agust 2020].
Fantke P., Gillespie B.W., Juraske R., Jolliet O. 2014. Estimating half-lives for pesticide dissipation from plants. Environmental Science and Technology 48: 8588–8602. DOI: https://doi.org/10.1021/es500434p
Fantke P., Juraske R. 2013. Variability of pesticide dissipation half-lives in plants. Environmental Science and Technology 47: 3548–3562. DOI: https://doi.org/10.1021/es303525x
Gad Alla S.A., Thabet W.M., Salama E.Y. 2013. Monitoring and risk assessment of pesticide residues in some egyptian vegetables. Middle East Journal of Applied Sciences 3 (4): 216–230.
Goumenou M., Tsatsakis A. 2019. Proposing new approaches for the risk characterization of single chemicals and chemical mixture: The source related Hazard Quotient (HQs) and Hazard Index (HIs) and the adversity specific Hazard Index (HIA). Toxicology Reports 6: 632–636. DOI: https://doi.org/10.1016/j.toxrep.2019.06.010
Hossain M.S., Fakhruddin A.N.M., Alamgir Zaman Chowdhury M., Rahman, M.A., Khorshed Alam M. 2015. Health risk assessment of selected pesticide residues in locally produced vegetables of Bangladesh. International Food Research Journal 22 (1): 110–115.
Ibrahim N.M., Eweis E.A., El-Sawi S.AM., Nassar K.R.A. 2018. Monitoring and risk assessment of pesticide residues in some vegetables in Egypt. Middle East Journal of Applied Sciences 8 (2): 669–679.
ILNAS-EN 15662:2018. Foods and plant origin – Multimethod for the determination of pesticide residues using GC- and LC- based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE–Modular QuEChERS method. European Committee for Standardization, Brussels.
Kalliora C., Mamoulakis C., Vasilopoulos E., Stamatiades G.A., Kalafati L., Barouni R., Karakousi T., Abdollahi M., Tsatsakis A. 2018. Association of pesticide exposure with human congenital abnormalities. Toxicology and Applied Pharmacology 346: 58–75. DOI: https://doi.org/10.1016/j.taap.2018.03.025
Khan N., Yaqub G., Hafeez T., Tariq M. 2020. Assessment of health risk due to pesticide residues in fruits, vegetables, soil and water. Journal of Chemistry 2020: 1–7. DOI: https://doi.org/10.1155/2020/5497952
Lehotay S.J., Koka Hiemstra M., Bodegraven P. 2005. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal of AOAC International 88: 595–614.
Mac Loughlin T.M., Leticia Peluso M., Agustina Etchegoyen M., Alonso L.L., Cecilia de Castro M., Cecilia Percudani M., Marino D.J.G. 2018. Pesticide residues in fruits and vegetables of the argentine domestic market: Occurrence and quality. Food Control 2018 (93): 129–138. DOI: https://doi.org/10.1016/j.foodcont.2018.05.041
Malhat F., Kasiotis K.M., Shalaby Sh.E.M. 2018. Magnitude of cyantraniliprole residues in tomato following open field application: A prelude to risk assessment. Environmental Monitoring and Assessment 190: 116. DOI: https://doi.org/10.1007/s10661-018-6496-7
Munn M.D., Gilliom R.J., Moran P.W., Nowell L.H. 2006. Pesticide Toxicity Index for Freshwater Aquatic Organisms. 2nd ed., Scientific Investigations Report 2006-5148. Reston, VA. 2006. [Available on: https://pubs.usgs.gov/sir/ 2006/5148/sir_2006-5148].
Pathak M.K., Fareed M., Srivastava A.K., Pangtey B.S., Bihari V., Kuddus M., Kesavachandran C. 2013. Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among sprayers exposed to misture of pesticides. Environmental Science and Pollution Research 20: 7296–7300. DOI: https://doi.org/10.1007/s11356-013-1743-5
Ramadan M.F.A., Abdel-Hamid M.M.A., Altorgoman M.M.F., AlGaramah H.A., Alawi M.A., Shati A.A., Shweeta H.A., Awwad N.S. 2020. Evaluation of pesticide residues in vegetables from Asir Region, Saudi Arabia. Molecules 2020 (25): 205.
Seo Y., Cho T., Hong C., Kim M., Cho S., Park W., Hwang I., Kim M. 2013. Monitoring and risk assessment of pesticide residues in commercially dried vegetables. Preventiv Nutrition and Food Science 18 (2): 145–149. DOI: https://doi.org/10.3746/pnf.2013.18.2.145
Shalaby Sh. E.M., Abdou G.Y. 2020. Assessment of pesticide residues in blood samples of agricultural workers in Egypt. Journal pf Plant Protection Research 60 (4): 369–376. DOI: https://doi.org/10.24425/jppr.2020.134912
Shalaby Sh.E.M., Abdou G.Y. 2010. The influence of soil microorganisms and bio- or organic rertilizers on dissipation of some pesticides in soil and potato tubers. Journal of Plant Protection Research 50 (1): 86–92. DOI: https://doi.org/10.2478/v10045-010-0015-3
Shalaby Sh. EM., El-Saadany S., Abo-Eyta A., Abdel-Satar A., Al-Afify A., Abd El-Gleel W. 2018. Levels of pesticide residues in water, soil sediment and fish samples collected from Nile River in Cairo, Egypt. Environmental Forensics 19 (4): 228–238. DOI: https://doi.org/10.1080/15275922.2018.1519735
Silipunyo T., Hongsibsong S., Phalaraksh C., Laoyang S., Kerdnoi T., Patarasiriwong V., Prepamontol T. 2017. Determination of organophosphorus pesticide residues in fruits, vegetables and health risk assessment among consumers in Chiang Mai Province, Northern Thailand. Research Journal of Environmental Toxicology 11: 20–27. DOI: https://doi.org/10.3923/rjet.2017.20.27
Tsatsakis A., Kouretas D., Tzatzarakis M., Stivaktakis P., Tsarouhas K., Golokhvast K., Rakitskii V., Tutelyan V., Hernandez A., Rezaee R. 2017. Simulating real-life exposures to uncover possible risks to human health: a proposed consensus for a novel methodological approach. Human and Experimental Toxicology 36: 554–564. DOI: https://doi.org/10.1177/0960327116681652
USEPA 1998. United States Environmental Protection Agency, Guidelines for Ecological Risk Assessment. EPA/630/R-95/002FApril 1998. Washington DC.
Walpole S.C., Prieto-Merino D., Edwards P., Cleland J., Stevens G., Roberts I. 2012. The weight of nations: an estimation of adult human biomass. BMC Public Health 12: 439. DOI: http://dx.doi.org/10.1186/1471-2458-12-439
WHO. 2003. World Health Organization. Diet, nutrition and prevention of chronic diseases. Report of a Joint FAO/WHO Expert Consultation, Geneva (WHO Technical Report Series No. 916).
WHO. 2009. GEMS/food regional diets. Regional per capita consumption of raw and semi-processed agricultural commodities. [Available on: Internet: http://www.who.int/foodsafety/publications/chem/regional_diets/en/] [Accessed: 12 November 2019].
WHO. 2019. World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guideline to Classification 2019, p 6.
WHO/GEMS/FOODS. 2006. GEMS/food regional diets (regional per capita consumption of raw and semi-processed agricultural commodities). [Available on: http://www.who.int/foodsafety/publications/chem/regional_diets/en/].
Wiles R., Davies K., Campbell C. 1998. Over exposed organophosphate insecticides in children's food. Environmental Working Group, Washington. [Available on: https://www.ewg.org/research/overexposed-organophosphate-insecticides-childrens-food].
Wołejko E., Łozowicka B., Kaczyński P. 2014. Pesticide residues in berries and juices and potential risk for consumers. Desalination Water Treatment 52: 3804–3818. DOI: https://doi.org/10.1080/19443994.2014.883793
Go to article

Authors and Affiliations

Shehata E.M. Shalaby
1
ORCID: ORCID
Gehan Y. Abdou
1
Ibrahim M. El-Metwally
2
Gomaa M.A. Abou-elella
1

  1. Pests and Plant Protection Department, National Research Centre, Dokki, Cairo, Egypt
  2. Botany Department, National Research Centre, Dokki, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The yield of many crops can be increased by irrigating them with magnetically treated water (MTW). The aim of our research was to determine if the efficacy of a soil-applied herbicide such as metribuzin against weeds could be affected by MTW. A split-plot randomized complete block experiment was designed with two main plots, including potato ( Solanum tuberosum L.) irrigated with equal volumes of MTW and non-MTW. Sub-plots were weedy control, weed-free control (hand-weeded), and pre-emergence application of metribuzin at 420 and 525 g a.i. · ha–1. Generally, MTW induced the seed germination and vegetative growth of Amaranthus blitoides S.Watson and Convolvulus arvensis L., resulting in a reduction of the total tuber yield of potato from 1.47 to 1.18 kg · m–2. MTW improved the efficacy of weed control strategies, resulting in an improvement of the total tuber yield and the water use efficiency of potato. The total tuber yield when metribuzin was applied at 420 g a.i. · ha–1 with MTW (3.51 kg · m–2) was more than when metribuzin was applied at 525 g a.i. · ha–1 with non-MTW (2.76 kg · m–2). It can be concluded that the use of MTW can be a safer crop production method by reducing the required dosage of metribuzin to control weeds. Considering the fact that the use of MTW without herbicide application increased the density of weed species, this method should be limited to a scenario where weeds can be effectively controlled.
Go to article

Bibliography


Abdel-Aziz A., Arafa Y.A., Sadik A. 2017. Maximizing water use efficiency for some plants by treated magnetic water technique under east Owainat conditions. Egyptian Journal of Soil Science 57: 353–369. DOI: https://doi.org/10.21608/EJSS.2017.509.1070
Abdel-Nabi H.M.E., El-shal Z.S.A., Doklega S.M.A., Abdel-Razek M.E.A. 2019. Effect of magnetic water and fertilization requirements on garlic yield and storability. Journal of Plant Production 10: 73–79. DOI: https://doi.org/10.21608/JPP.2019.36234
Ahmed M.E.M., Abd El-Kader N.I. 2016. Influence of magnetic water and water regimes on soil salinity, growth, yield and tubers quality of potato plants. Middle East Journal of Agriculture Research 5: 132–143. DOI: https://doi.org/10.17221/1/2020-RAE
Aliverdi A., Borghei M. 2021. Spray coverage and biological efficacy of single, twin symmetrical, and twin asymmetrical flat fan nozzles. Acta Technologica Agriculturae 24: 92–96. DOI: https://doi.org/10.2478/ata-2021-0015
Alkassab A.T., Albach D.C. 2014. Response of Mexican aster Cosmos bipinnatus and field mustard Sinapis arvensis to irrigation with magnetically treated water (MTW). Biological Agriculture and Horticulture 30: 62–72. DOI: https://doi.org/10.1080/01448765.2013.849208
Ali A., Arfa Y., Mohamed A.S. 2017. Maximizing water use efficiency for some plants by treated magnetic water technique under east owainat conditions. Egyptian Journal of Soil Science 57: 353-369. DOI: https://doi.org/10.21608/EJSS.2017.509.1070
Ansar Industrial Group. 2019. Magnetic Water Softener. www.ansarco.biz/products/magnetic-water-softener
Carbonell M.V., Martinez E., Diaz J.E., Amaya J.M., Florez M. 2004. Influence of magnetically treated water on germination of signal grass seeds. Seed Science and Technology 32: 617–619. DOI: https://doi.org/10.15258/SST.2004.32.2.30
Chang K.T., Weng C.I. 2006. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics 100: 043917–043926. DOI: https://doi.org/10.1063/1.2335971
Coey J.M.D., Cass S. 2000. Magnetic water treatment. Journal of Magnetism and Magnetic Materials 209: 71–74. DOI: https://doi.org/10.1016/S0304-8853(99)00648-4
FAO. 2018. FAOSTAT database. [Available on: www.fao.org]
Fathi A., Mohamed T., Claude G., Maurin G., Mohamed B.A. 2006. Effect of magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research 40: 1941–1950. DOI: https://doi.org/10.1016/j.watres.2006.03.013
Flórez M., Carbonell M.V., Martínez E. 2004. Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. Electromagnetic Biology and Medicine 19: 271–277. DOI: https://doi.org/10.1081/LEBM-200042316
Gallandt E.R. 2006. How can we target the weed seedbank? Weed Science 54: 588–596. DOI: https://doi.org/10.1614/WS-05-063R.1
Grewal H.S., Maheshwari B.L. 2011. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelctromagnetics 32: 58–65. https://doi.org/10.1002/bem.20615
Hachicha M., Kahlaoui B., Khamassi N., Misle E., Jouzdan O. 2016. Effect of electromagnetic treatment of saline water on soil and crops. Journal of the Saudi Society of Agricultural Sciences 17: 154–162. DOI: https://doi.org/10.1016/j.jssas.2016.03.003
Hozayn M., Salama A.M., Abd El-Monem A.A., Hesham A.F. 2016. The impact of magnetized water on the anatomical structure, yield and quality of potato ( Solanum tuberosum L.) grown under newly reclaimed sandy soil. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7: 1059–1072. DOI: https://www.rjpbcs.com/pdf/2016_7(3)/[131].pdf
Hutchinson P.J.S., Eberlein C.V., Tonks D.J. 2004. Broadleaf weed control and potato crop safety with postemergence rimsulfuron, metribuzin, and adjuvant combinations. Weed Technology 18: 750–756. DOI: https://doi.org/10.1614/WT-03-172R1
Kjær J., Olsen P., Henriksen T., Ullum M. 2005. Leaching of metribuzin metabolites and the associated contamination of a sandy Danish aquifer. Environmental Science and Technology 39: 8374–8381. DOI: https://doi.org/10.1021/es0506758
Krishnaraj C., Yun S., Kumar A.V.K. 2017. Effect of magnetized water (biotron) on seed germination of Amaranthaceae family. Journal of Academia and Industrial Research 5: 152–156. DOI: http://www.jairjp.com/MARCH%202017/03%20KRISHNARAJ.pdf
Liu X., Zhu H., Meng S., Bi S., Zhang Y., Wang H., Song C., Ma F. 2019. The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × euramericana ‘Neva’ under NaCl stress. Acta Physiol Plant 41: 11. DOI: https://doi.org/10.1007/s11738-018-2798-1
López-Piñeiro A., Peña D., Albarrán A., Becerra D., Sánchez-Llerena J. 2013. Sorption, leaching and persistence of metribuzin in Mediterranean soils amended with olive mill waste of different degrees of organic matter maturity. Journal of Environmental Management 122: 76–84. DOI: https://doi.org/10.1016/j.jenvman.2013.03.006
Monaco T.J., Weller S.C., Ashton F.M. 2002. Weed Science: Principles and Practices. 4rd ed. John Wiley and Sons, Inc., New York. USA.
Morejón L.P., Castro-Palacio J.C., Velázquez-Abad L., Govea, A.P. 2007. Stimulation of Pinus tropicalis M. seeds by magnetically treated water. International Agrophysics 21: 173–177. DOI: http://www.international-agrophysics.org/Stimulation-of-Pinus-tropicalis-M-seeds-by-magnetically-treated-water,106543,0,2.html
Noran R., Shani U., Lin I. 1996. The effect of irrigation with magnetically treated water on the translocation of minerals in the soil. Physical Separation in Science and Engineering 7: 109–122. DOI: https://doi.org/10.1155/1996/46596
Rashed-Mohassel M.H., Aliverdi A., Ghorbani R. 2009. Effects of a magnetic field and adjuvant in the efficacy of cycloxydim and clodinafop-propargyl on the control of wild oat (Avena fatua). Weed Biology and Management 9: 300–306. DOI: https://doi.org/10.1111/j.1445-6664.2009.00354.x
Surendran U., Sandeep O., Joseph E.J. 2016. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management 178: 21–29. DOI: https://doi.org/10.1016/j.agwat.2016.08.016
Teixeira da Silva J.A., Dobránszki J. 2014. Impact of magnetic water on plant growth. Environmental and Experimental Biology 12: 137–142. DOI: http://eeb.lu.lv/EEB/201412/EEB_XII_4_Teixeira_da_Silva_1.pdf
Toledo E.J.L., Ramalho T.C., Magriotis Z.M. 2008. Influence of magnetic field on physical chemical properties of the liquid water: insights from experimental and theoretical models. Journal of Molecular Structure 888: 409–415. DOI: https://doi.org/10.1016/j.molstruc.2008.01.010
Zhang H., Zhang Y., Hou Z., Wu X., Gao H., Sun F., Pan H. 2014. Biodegradation of triazine herbicide metribuzin by the strain Bacillus sp. N1. Journal of Environmental Science and Health, Part B, 49: 79–86. DOI: https://doi.org/10.1080/03601234.2014.844610
Zhang H., Xu F., Wu Y., Hu H., Dai X. 2017. Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture 16: 2924–2932. DOI: https://doi.org/10.1016/S2095-3119(17)61736-2
Zimdahl R.L. 2004. Weed-Crop Competition: A Review. 2nd ed. Blackwell Publishing Ltd. Oxford, UK.
Go to article

Authors and Affiliations

Akbar Aliverdi
1
ORCID: ORCID

  1. Department of Agronomy and Plant Breeding, Bu-Ali Sina University, Hamedan, Iran
Download PDF Download RIS Download Bibtex

Abstract

More than 4100 plant-parasitic nematodes species have been described to date, some of which are of significant economic importance since they cause losses in agriculture. This paper presents new data on three species of the genus Longidorus: L. attenuatus, L. elongatus and L. euonymus from Poland. The study was based on 1138 soil samples taken from different regions of the country. A total of 77 populations of L. elongatus, 23 of L. attenuatus and 7 of L. euonymus were found which corresponds with 6.76%, 2.02% and 0.62% of all analyzed samples, respectively. Distribution maps are presented together with data on the morphometrics, molecular markers D2-D3 28S rDNA and data on host plants on which the nematodes were found.
Go to article

Bibliography


Brown D.J.F., Boag B. 1988. An examination of methods used to extract virus vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematologia Mediterranea 16 (1): 93–99.
Brown E.B., Sykes G.B. 1971. Studies on the relation between density of Longidorus elongatus and growth of sugar beet, with supplementary observations on Trichodorus spp. Annals of Applied Biology 68 (3): 291–298. DOI: https://doi.org/10.1111/j.1744-7348.1971.tb04648.x
Brzeski M.W. 1968. Plant parasitic nematodes associated with cabbage in Poland. I. Systematic studies. Annales Zoologici 26: 249–279.
Courtney W.D., Polley D., Miller V.L. 1955. TAF, an improved fixative in nematode technique. Plant Disease Reptort 39: 570–571.
Donatelli M., Magarey R.D., Bregaglio S., Willocquet L., Whish J.P., Savary S. 2017. Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems 155: 213–224. DOI: https://doi.org/10.1016/j.agsy.2017.01.019
Groza M., Lazarova S., Rosca I., Peneva V. 2014. Morphology and distribution of Longidorus euonymus (Nematoda) from Romania. Scientific Papers. Series A. Agronomy 57: 407–414.
Harrison B.D. 1964. Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Virology 22 (4): 544–550. DOI: https://doi.org/10.1016/0042-6822(64)90075-3
Harrison B.D., Mowat W.P., Taylor C.E. 1961. Transmission of a strain of tomato black ring virus by Longidorus elongatus (Nematoda). Virology 14 (4): 480–485. DOI: https://doi.org/10.1016/0042-6822(61)90341-5
Hooper D.J. 1961. A redescription of Longidorus elongatus (de Man, 1876) Thorne & Swanger, 1936 (Nematoda, Dorylaimida) and description of five new species of Longidorus from Great Britain. Nematologica 6: 237–257. DOI: https://doi.org/10.1163/187529261x00072
Hugot J. P., Baujard P., Morand S. 2001. Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3 (3): 199–208. DOI: https://doi.org/10.1163/156854101750413270
Jończyk M., Borodynko N., Pospieszny H. 2004a. Restriction analysis of genetic variability of Polish isolates of Tomato black ring virus. Acta Biochimica Polonica 51 (3): 673–681. DOI: https://doi.org/10.18388/abp.2004_3552
Jończyk M., Le Gall O., Pałucha A., Borodynko N., Pospieszny H. 2004b. Cloning and sequencing of full-length cDNAs of RNA1 and RNA2 of a Tomato black ring virus isolate from Poland. Archives of Virology 149 (4): 799–807. DOI: https://doi.org/10.1007/s00705-003-0261-z
Juroszek P., Racca P., Link S., Farhumand J., Kleinhenz B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology 69 (2): 179–193. DOI: https://doi.org/10.1111/ppa.13119
Kornobis F. 2013. Nematodes of the subfamily Longidorinae (Nematoda: Dorylaimida) in Poland. PhD Thesis. Adam Mickiewicz University, Poznan, 205 pp. (in Polish)
Kornobis F.W., Dobosz R., Bubniewicz P., Filipiak A. 2016. First record of nematode Longidorus attenuatus on soybean in Poland. Plant Disease 100 (1): 228. DOI: https://doi.org/10.1094/PDIS-06-15-0625-PDN
Kornobis F.W., Susulovska S., Susulovsky A., Subbotin S.A. 2015. Morphological and molecular characterisation of Paralongidorus rex Andrássy, 1986 (Nematoda: Longidoridae) from Poland and Ukraine. European Journal of Plant Pathology 141 (2): 385–395. DOI: https://doi.org/10.1007/s10658-014-0550-2
Mali V.R., Hooper D.J. 1973. Observations on Longidorus euonymus n. sp. and Xiphinema vuittenezi Luc et al., 1964 (Nematoda: Dorylaimida) associated with spindle trees infected with Euonymus mosaic virus in Czechoslovakia. Nematologica 19 (4): 459–467. DOI: https://doi.org/10.1163/187529273X00457
Nunn G.B. 1992. Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences. PhD Thesis, University of Nottingham, Nottingham, UK.
Oro V., Hubschen J., Karanastasi E., Krnjajić S., Krnjaić D., Brown D.J.F., Neilson R. 2005. Inter-population variability of Longidorus euonymus Mali and Hooper, 1974 (Nematoda, Dorylaimida) and comment upon the number of juvenile developmental stages. Helminthologia 42 (3): 155–165.
Palomares-Rius J.E., Escobar C., Cabrera J., Vovlas A., Castillo P. 2017. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Frontiers in Plant Science 8: 1987. DOI: https://doi.org/10.3389/fpls.2017.01987
Pathak T.B., Maskey M.L., Dahlberg J.A., Kearns F., Bali K.M. Zaccaria D. 2018. Climate change trends and impacts on California agriculture: a detailed review. Agronomy 8 (3): 25. DOI: https://doi.org/10.3390/agronomy8030025
Roca F., Lamberti F., Agnostinelli A. 1985. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine II. La Basilicata. Nematologia Mediterranea 13 (2): 161–175.
Roca F., Lamberti F., Agnostinelli A. 1987. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine V. Il Lazio. Nematologia Mediterranea 15 (1): 71–101.
Roca F., Lamberti F., Agostinelli A. 1988a. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine VII. Piemonte e la valle D’Aosta. Nematologia Mediterranea 16 (1): 35–51.
Roca F., Lamberti F., Agostinelli A. 1988b. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine VIII L’Emilia-Romagna. Nematologia Mediterrenea 16 (2): 179–188.
Roca F., Lamberti F., Agostinelli A. 1989. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. IX. La Sicilia. Nematologia Mediterranea 17 (2): 151–165.
Roca F., Lamberti F., Elia F. 1991. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. XI. La Campania. Nematologia Mediterranea 19 (1): 139–154.
Roca F., Lamberti F. 1993 I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. XIII. La Toscana. Nematologia Mediterranea 21 (2): 261–272.
Seinhorst J.W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4: 67–69.
Sharma R.D. 1965. Direct damage to strawberry by Longidorus elongatus (de Man, 1876) Thorne and Swanger, 1936. Mededelingen van de Landbouwhogeschool te Gent 30: 1437–1443.
Singh S.K., Hodda M., Ash G.J. 2013. Plant‐parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. Eppo Bulletin 43 (2): 334–374. DOI: https://doi.org/10.1111/epp.12050
Singh S., Singh B., Singh A.P. 2015. Nematodes: A threat to sustainability of agriculture. Procedia Environmental Sciences 29: 215–216. DOI: https://doi.org/10.1016/j.proenv.2015.07.270
Szczygieł A. 1974. Plant parasitic nematodes associated with strawberry plantations in Poland. Zeszyty Problemowe Postępów Nauk Rolniczych 154: 9–132.
Szczygieł A., Brzeski M.W. 1985. Atlas of Plant Parasitic Nematodes of Poland. Distribution of Longidoridae, Xiphinemidae and Trichodoridae. European Plant Parasitic Nematode Survey, 32 pp.
Taylor G.E. 1962. Transmission of raspberry ringspot virus by Longidorus elongatus (de Man) (Nematoda: Dorylaimidae). Virology 17 (3): 493–494. DOI: https://doi.org/10.1016/0042-6822(62)90145-9
Taylor C.E., Brown D.J.F. 1997. Nematode Vectors of Plant Viruses. CAB Interntional, Wallingford, USA, 296 pp.
Whitehead A.G., Hooper D.J. 1970. Needle nematodes (Longidorus spp.) and stubby‐root nematodes (Trichodorus spp.) harmful to sugar beet and other field crops in England. Annals of Applied Biology 65: 339–350. DOI: https://doi.org/10.1111/j.1744-7348.1970.tb05502.x
Winiszewska G., Dmowska E., Chałańska A., Dobosz R., Kornobis F., Ilieva‐Makulec K., Skwiercz A., Wolny S., Ishaqe E. 2012. Nematodes associated with plant growth inhibition in the Wielkopolska region. Journal of Plant Protection Research 52 (4): 440– 446. DOI: https://doi.org/10.2478/v10045-012-0071-y
Witkowska T. 1958. Obserwacje nad fauną i ekologią nicieni w różnych uprawach rolniczych. Zeszyty Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu. Nauki Matematyczno- Przyrodnicze 3: 103–123.
Go to article

Authors and Affiliations

Franciszek Kornobis
1
ORCID: ORCID

  1. Department of Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of environmentally friendly bio-pesticides is crucial for higher root and sugar yield in sugar beets. The economic importance of beet moth [ Scrobipalpa ocellatella Boyd. (Lep.: Gelechidae)] losses in the field and storage highlight the need for evaluation of appropriate, environmentally friendly methods for pest control. The aims of the present study were to i) assess azadirachin (AZN) effects on the life cycle and activity of the pest, and ii) manage the beet moth on roots under laboratory conditions. For the experiments, the main concentrations were prepared on the basis of the field-recommended dose of this pesticide (1–1.5 l/1000 l water). The LC50 was estimated for 3rd instar larvae. Later, at sublethal concentrations, the relative time for the emergence of each developmental stage was determined. The mean female fecundity was 37% (±4) for treated tests at the lowest AZN concentration (0.5 ml · l–1). AZN at 0.5 ml · l–1 concentration resulted in 62 (±4) deposited eggs per plant for the treated roots and 326 (±1) for roots in the control test. Mortality increased in response to increased AZN concentrations. The results revealed that after 72 h, the highest AZN concentration (2.5 ml · l–1) caused 100% repellency and 82% (±1.38) mortality on 3rd instar larvae. According to our findings, a concentration of 2 ml · l–1 AZN (20 gr active ingredient per 1 hectare) after 4 days affected 1st instar larvae and the larvae with no further development had 92.2% (±1.2) mortality. In conclusion, the results revealed that AZN as a biorational pesticide can significantly minimize the losses of S. ocellatella on sugar beet crops.
Go to article

Bibliography


Abdollahian-Noghabi M., Sharifi H., Babaei B., Bahmani G.A. 2014. Introduction of a new formula for determination of autumn sugar beet purchase price. Journal of Sugar Beet 29: 115–121. DOI: https://doi.org/10.1515/cerce-2015-0013.
Abedi Z., Saber M., Vojoudi S., Mahdavi V., Parsaeyan E. 2014. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science 14 (1): 30. DOI: https://doi.org/10.1093/jis/14.1.30
Adel M.M., Sehnal F., Ibrahim S.S., Yosef Salem N. 2019. Suneem oil inhibits physiological activity of Spodoptera Littoralis (Boisd.) (Lepidoptera: Noctuidae). EurAsian Journal of BioSciences 13 (2): 1311–1316.
Al-Keridis L.A. 2016. Biology, ecology and control studies on sugar-beet mining moth, Scrobipalpa ocellatella. Der Pharma Chemica 8 (20): 166–171.
Al-Rahimy S.K., Al-Sultany A.K., Murshidy Z.R., Al-Essa R.A., Kadhim Abdul A.R. 2019. Effect of crude extracts of the peels of Musa acuminate L. banana plant in some biological aspects of Culex molestus Forskal (Diptera: Culicidae) with an estimation of the enzymatic effectiveness of Tyrosinase. EurAsian Journal of BioSciences 13 (1): 1–13.
Alouani A., Rehimi N., Soltani N. 2009. Larvicidal activity of a neem tree extract (azadirachtin) against mosquito larvae in the Republic of Algeria. Jordan Journal of Biological Sciences 2 (1): 15–22.
Amin A.H., Helmi A., El-Serwy S.A. 2008. Ecological studies on sugar beet insects at Kafr El-Sheikh Governorate, Egypt. Egyptian Journal of Agricultural Research 86 (6): 2129–2139.
Amoabeng B.W., Johnson A.C., Gurr G.M. 2019. Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Applied Entomology and Zoology 54: 1–19. DOI: https://doi.org/10.1007/s13355-018-00602-0
Anonymous. 2020. Final Research Performance Report of Sugar Beet Seed Institute (SBSI) for 2018 Cropping Season. Agricultural Research, Education and Extension Organization (AREEO). Ministry of Jihad-e-Agriculture, Karaj, Iran, 121 pp. (in Persian)
Ascher K.R.S. 1993. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Archives of Insect Biochemistry and Physiology 22: 433–449. DOI: https://doi.org/10.1002/arch.940220311
Bazazo K.G.I., Mashaal R.E.F. 2014. Pests attacking post-harvest sugar beet roots, and their adverse effects on sugar content. Journal of Plant Protection and Pathology 5: 673–678. DOI: https://doi.org/10.21608/jppp.2014.87978
Bazok R., Drmic Z., Cacija M., Mrganic M., Viric Gasparic H., Lemic D.A. 2018. Moths of Economic Importance in the Maize and Sugar Beet Production. Intech Publications. Chapter 4, 21 pp. DOI: http://dx.doi.org/10.5772/intechopen.78658
Bazok R. 2010. Suzbijanje štetnika u proizvodnji šećerne repe. Glasilo Biljne Zaštite 10 (3): 153–165.
Betz A., Andrew N.R. 2020. Influence of non-lethal doses of natural insecticides spinetoram and azadirachtin on Helicoverpa punctigera (native budworm, Lepidoptera: Noctuidae) under laboratory conditions. Frontiers in Physiology 11: 1089. DOI: https://doi.org/10.3389/fphys.2020.01089
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide Biochemistry and Physiology 143: 135–140. DOI: https://doi.org/10.1016/j.pestbp.2017.08.006
Bezzar-Bendjazia R., Kilani-Morakchi S., Aribi N. 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology 133: 85–90. DOI: https://doi.org/10.1016/j.pestbp.2016.02.009
Bruce Y.A., Gounou S., Chabi-Olaye A., Smith H., Schulthess F. 2004. The effect of neem (Azadirachtaindica indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology 6: 223–232. DOI: https://doi.org/10.1111/j.1461-9555.2004.00218.x
Brunherotto R., Vendramim J.D., M.A.G. de. Oriani. 2010. Effects of tomato genotypes and aqueous extracts of Melia azedarach leaves and Azadirachta indica seeds on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 39: 784–791. DOI: https://doi.org/10.1590/S1519-566X2010000500018
Boadu K.O., Kofi Tulashie S., Akrofi Anang M., Desire Kpan J. 2011. Production of natural insecticide from neem leaves (Azadirachta indica). Asian Journal of Plant Science and Research 1 (4): 33–38.
Butterworth J.H., Morgan E.D. 1968. Isolation of a substance that suppresses feeding in locusts. Chemical Communications 1: 23–24. DOI: https://doi.org/10.1039/C19680000023
Darabian K., Yarahmadi F. 2017. Field efficacy of azadirachtin, chlorfenapyr, and Bacillus thuringiensis against Spodoptera exigua (Lepidoptera: Noctuidae) on sugar beet crop. Journal of the Entomological Research Society 19 (3): 45–52.
Dhar R., Dawar H., Garg S., Basir S.E., Talwar G.P..1996. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An. culicifacies (Diptera: Culicidae). Journal of Medical Entomology 33 (2): 195–201. DOI: https://doi.org/10.1093/jmedent/33.2.195
Dorn A., Rademacher J.M., Sehn E. 1987. Effects of azadirachtin on reproductive organs and fertility in the large milkweed bug, Oncopeltus fasciatus. Proc. 3rd Int. Neem Conf. Nairobi, 1986, Eschborn: GTZ. 13 (3): 273–288. DOI: https://doi.org/10.1016/0022-1910(86)90063-6
Dreistadt S.H. 2004. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide. UCANR Publications, CA, USA.
Er A., Taşkıran D., Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae). Archives of Biological Sciences 69 (2): 335–344. DOI: https://doi.org/10.2298/ABS160421108E
Fajt E. 1951. Repin moljac (Phthorimaea ocelatela). Biljna Proizvodnja 4 (1): 136–141.
Feder D., Valle D., Rembold H., Garcia E.S..1988. Azadirachtin induced sterilization in mature females of Rhodniuspro lixus. Zeitschriftfür Naturforschung C 43: 908–913. DOI: https://doi.org/10.1515/znc-1988-11-1218
Finney D.J. 1971. Probit Analysis. 3rd Edition, Cambridge University Press, Cambridge, UK, 333 pp.
Fong D.K.H., Kim S., Chen Z., DeSarbo W.S..2016. A Bayesian multinomial probit model for the analysis of panel choice data. Psychometrika 81 (1): 161–83. DOI: https://doi.org/10.1007/s11336-014-9437-6
Fugate K.K., Campbell L.G. 2009. Postharvest deterioration of sugar beet. p. 92–94. In: “Compendium of Beet Diseases and Pests” (R.M. Harveson, L.E. Hanson, G.L. Hein, eds.). Part III. 2nd edition. St. Paul, MN: The American Phytopathological Society Publication, USA.
Ganji Z., Moharramipour S. 2017. Cold hardiness strategy in field collected larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran 36 (4): 287–296.
Garcia J.F., Grisoto E., Vendramim J.D., Botelho P.S.M. 2006. Bioactivity of neem, Azadirachta indica, against spittlebug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane. Journal of Economic Entomology 99: 2010–2014. DOI: https://doi.org/10.1093/jee/99.6.2010
Gnanamani R., Dhanasekaran S. 2013. Growth inhibitory effects of azadirachtin against Pericallia ricini (Lepidoptera: Arctiidae). World Journal of Zoology 8 (2): 185–191.
Godinho H.P. 2007. Reproductive strategies of fishes applied to aquaculture: bases for development of production technologies. Revista Brasileira de Reprodução Animal 31 (3): 351–360.
Hasan F., Ansari M.S..2011. Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Protection 30 (4): 502–507. DOI: https://doi.org/10.1016/j.cropro.2010.11.029
Heibatian A., Yarahmadi F., Lotfi Jalal Abadi A. 2018. Field efficacy of biorational insecticides, azadirachtin and Bt, on Agrotis segetum (Lepidoptera: Noctuidae) and its carabid predators in the sugar beet fields. Journal of Crop Protection 7 (4): 365–373.
Ikeura H., Sakura A., Tamaki M. 2013. Repellent effect of neem against the cabbage armyworm on leaf vegetables. Journal of Agriculture and Sustainability 4 (1): 1–15.
Irigaray F.J., Moreno-Grijalba F., Marco V., Perez-Moreno I. 2010. Acute and reproductive effects of Align®, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana. Journal of Insect Science 10: 1–33. DOI: https://doi.org/10.1673/031.010.3301
Ismadji S., Kurniawan A., Ju Y.H., Soetaredjo F.E., Ayucitra A., Ong L.K. 2012. Solubility of Azadirachtin and several triterpenoid compounds extracted from neem seed kernel in supercritical CO2. Fluid Phase Equilibria 336: 9–15. DOI: https://doi.org/10.1016/j.fluid.2012.08.026
Jagannadh V., Nair V. 1992. Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiological Entomology 17: 56–61. DOI: https://doi.org/10.1111/j.1365-3032.1992.tb00989.x
Kheiri M. 1991. Important Pests of Sugar Beet and Their Control. Ministry of Agriculture, Agricultural Research and Education organization. Kalameh Publication Institute, Tehran. Iran, 126 pp. (in Persian)
Kheiri M., Naiim A., Fazeli M., Djavan-Moghaddam H., Eghtedar E. 1980. Some studies on Scrobipalpa ocellatella Boyd in Iran. Applied Entomology and Phytopathology 48: 1–39. (in Persian)
Liang G.M., Chen W., Liu T.X. 2003. Effects of three neem-based insecticides on diamond back moth (Lepidoptera: Plutellidae). Crop Protection 22: 333–340. DOI: https://doi.org/10.1016/S0261-2194(02)00175-8
Liu T.X., Liu S.S. 2006. Experience‐altered oviposition responses to a neem‐based product, Neemix®, by the diamondback moth, Plutella xylostella. Pest Management Science 62: 38–45. DOI: https://doi.org/10.1002/ps.1123
Lopez O., Fernández-Bolaños J.G., Gil M.V. 2005. New trends in pest control: The search for greener insecticides. Green Chemistry 7 (6): 431–442. DOI: https://doi.org/10.1039/b500733j
Lucantoni L., Giusti F., Cristofaro M., Pasqualini L., Esposito F., Lupetti P. 2006. Effects of a neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue and Cell 38: 361–371. DOI: https://doi.org/10.1016/j.tice.2006.08.005
Ma D.L., Gordh G., Zalucki M.P. 2000. Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Australian Journal of Entomology 39 (4): 301–304. DOI: https://doi.org/10.1046/j.1440-6055.2000.00180.x
Manna B., Maiti S., Dasa A. 2020. Bioindicator potential of Spathosternum prasiniferum (Orthoptera; Acridoidea) in pesticide (azadirachtin)-induced radical toxicity in gonadal/nymphal tissues; correlation with eco-sustainability. Journal of Asia-Pacific Entomology 23: 350–357. DOI: https://doi.org/10.1016/j.aspen.2020.02.007
Martinez S.S., van Emden H.F. 2001. Growth disruption, abnormalities and mortality of Spodoptera littoralis caused by azadirachtin. Neotropical Entomology 30: 113–125. DOI: http://dx.doi.org/10.1590/S1519-566X2001000100017
Mochiah M.B., Banful B., Fening K.N., Amoabeng B.W., Ekyem S., Braimah H., Owusu-Akyaw M. 2011. Botanicals for the management of insect pests in organic vegetable production. Journal of Entomology and Nematology 3 (6): 85–97.
Mordue A.J. 2004. Present concepts of the mode of action of azadirachtin from Neem. p. 229–242. In: “Neem: Today and in the New Millennium” (O. Koul, S. Wahab, eds.). Chapter 11. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/1-4020-2596-3_11
Mordue A.J., Blackwell A. 1993. Azadirachtin: an update. Journal of Insect Physiology 39: 903–924. DOI: https://doi.org/10.1016/0022-1910(93)90001-8
Mordue A.J., Morgan E.D., Nisbet A.J. 2005. Azadirachtin, a natural product in insect control. p. 185–201. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, ed.). Elsevier, Amsterdam.
Morgan E.D. 2009. Azadirachtin, a scientific gold mine. Journal of Bioorganic and Medicinal Chemistry 17 (12): 4096–4105. DOI: https://doi.org/10.1016/j.bmc.2008.11.081
Naumann K., Isman M.B. 1995. Evaluation of neem Azadirachtaindica seed extracts and oils as oviposition deterrents to noctuid moths. Entomologia Experimentalis et Applicata 76: 115–120. DOI: https://doi.org/10.1111/j.1570-7458.1995.tb01953.x
Orak S., Zandi-Sohani N., Yarahmadi F. 2019. Some alternatives to the chemical control of Spodoptera exigua (Hubner, 1808) in black-eyed pea. International Journal of Tropical Insect Science 39: 319–323. DOI: https://doi.org/10.1007/s42690-019-00043-4
Osborne J.W. 2010. Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research and Evaluation 15: 1–9. DOI: https://doi.org/10.7275/qbpc-gk17
Pineda S. Martinez A.M., Figueroa J.I., Schneider M.I., Estal P.D., Vinuela E., Gomez B., Smagghe G., Budia F. 2009. Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 102: 1490–1496. DOI: https://doi.org/10.1603/029.102.0413
Qiao J., Zou X., Lai D., Yan Y., Wang Q., Li W., Gu H. 2014. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest Management Science 70: 1041–1047. DOI: https://doi.org/10.1002/ps.3644
Qin D., Zhang P., Zhou Y., Liu B., X Jao C., Chen W., Zhang Zh. 2019. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of Insect Biochemistry and Physiology 103 (4): 1–12. DOI: https://doi.org/10.1002/arch.21646
Radhika S., Sahayaraj K., Senthil‐Nathan S., Hunter W.B. 2018. Individual and synergist activities of monocrotophos with neem based pesticide, Vijayneem against Spodoptera litura Fab. Physiological and Molecular Plant Pathology 101: 54–68. DOI: https://doi.org/10.1016/j.pmpp.2017.05.004
Raman G.V., Rao M.S., Srimannaryana G. 2000. Efficacy of botanical formulations from Annona squamosa Linn. and Azadirachta indica A. Juss against semilooper Achaea janata Linn. infesting castor in the field. Journal of Entomological Research. 24(3): 235–238.
Rashidov M.A., Khasanov A. 2003. Pests of sugar beet in Uzbekistan. Zashchita Rastenii 3: 29.
Razini A., Pakyari H., Arbab A. 2017. Estimation of sugar beet lines and cultivars infection to Scrobipalpa ocellatellaboyd. (Lepidoptera: Gelechiidae) larvae under field condition with natural infection. Journal of Sugar Beet 32 (2): 147–155.
Razini A., Pakyari H., Arbab A., Ardeh M.J., Ardestani H. 2016. Study of infestation amount to beet moth “Scrobipalpa ocellatella”, among different sugar beet genotypes in the field. Proceedings of 22nd Iranian Plant Protection Congress, 23-27 August, Karaj, Iran.
Sami A.J., Bilal S., Khalid M.,. Shakoori F.R, Rehman F., Shakoori A.R. 2016. Effect of crude neem (Azadirachta indica) powder and azadirachtin on the growth and Acetylcholinesterase activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Zoology 48 (3): 881–886.
Schluter U., Bidmon H.J., Grewe S. 1985. Azadirachtin affects growth and endocrine events in larvae of the tobacco hornworm Manduca sexta. Journal of Insect Physiology 31: 773–777. DOI: https://doi.org/10.1016/0022-1910(85)90070-8
Schmutterer H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271–297. DOI: https://doi.org/10.1146/annurev.en.35.010190.001415
Schreck C.E. 1977. Techniques for evaluation of insect repellents: a critical review. Annual Review of Entomology 22: 101–119. DOI: https://doi.org/10.1146/annurev.en.22.010177.000533
Seljasen R., Meadow R. 2006. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: dose response, residual activity, repellent effect and systemic activity in cabbage plants. Crop Protection 25: 338–345. DOI: https://doi.org/10.1016/j.cropro.2005.05.007
Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiology 4: 359. DOI: https://doi.org/10.3389/fphys.2013.00359
Shannag H., Capinera J., Freihat N.M. 2015. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). Journal of Insect Science 15 (1): 152. DOI: https://doi.org/10.1093/jisesa/iev134
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 (7): 1–36. DOI: https://doi.org/10.3390/biom9070285
Shimizu T. 1988. Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage armyworm, Mamestra brassicae, in vitro. Entomologia Experimentalis et Applicata 46: 197–199.
Sieber K.P., Rembold H. 1983. The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. Journal of Insect Physiology 29: 523–527. DOI: https://doi.org/10.1016/0022-1910(83)90083-5
Smith S.L., Mitchell M.J..1988. Effects of azadirachtin on insect cytochrome P-450 dependant ecdysone 20-mono oxygenase activity. Biochemical and Biophysical Research Communications 154: 559–563. DOI: https://doi.org/10.1016/0006-291x(88)90176-3
Shu B., Zhang J., Cui G., Sun R., Yi X., Zhong G. 2018. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers in Physiology 9: 1–12. DOI: https://doi.org/10.3389/fphys.2018.00137
Tanzubil P.B. 1995. Effects of neem Azadirachta indica (A. Juss) extracts on food intake and utilization in the African armyworm, Spodoptera exempta (Walker). Insect Science and its Application 16: 167–170. DOI: https://doi.org/10.1017/S1742758400017069
Tanzubil P.B., McCaffery A.R..1990. Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm, Spodoptera exempta. Crop Protection 9: 383–386. DOI: https://doi.org/10.1016/0261-2194(90)90012-V
Tome H.V.V., Martins J.C., Corrêa A.S., Galdino T.V.S., Picanço M.C., Guedes R.N.C. 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta. Crop Protection 46: 63–69. DOI: https://doi.org/10.1016/j.cropro.2012.12.021
Ünsal S., Güner E. 2016. The effects of biopesticide Azadirachtin on the Fifth Instar Galleria mellonella L. (Lepidoptera: Pyralidae) Larval Integument. International Journal of Crop Science and Technology. 2(2): 60-68.
Vilca Malqui K.S., Vieira J.L., Guedes R.N.C., Gontijo L.M. 2014. Azadirachtin-induced hormesis mediating shift in fecundity longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). Journal of Economic Entomology 107: 860–866. DOI: https://doi.org/10.1603/ec13526
Wallace E.L. 2017. Investigating Life History Stages and Methods to Interrupt the Life Cycle, and Suppress Offspring Production, in the Queensland Fruit Fly (Bactroceratryoni). Thesis (PhD Doctorate). Griffith School of Environment. Gold Coast, Queensland, Australia, 118 pp. DOI: https://doi.org/10.25904/1912/1946
Wilps H. 1989. The influence of neem seed kernel extracts (NSKE) from the neem tree Azadirachta indicaon flight activity, food ingestion, reproductive rate and carbohydrate metabolism in the Diptera Phormia terraenovae (Diptera, Muscidae). Zoologische Jahrbucher Physiology 93: 271–282.
Zada H., Naheed H., Ahmad B., Saljoqi A.Ur R., Salim M., Hassan E. 2018. Toxicity potential of different azadirachtin against Plutella Xylostella (Lepidoptera; Plutellidae) and its natural enemy, Diadegma species. Journal of Agronomy and Agricultural Science 1: 003. DOI: https://doi.org/10.24966/AAS-8292/100003
Zhong B., Chaojun L., Weiquan Q. 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomological Society 100 (2): 215–218. DOI: https://doi.org/10.1653/024.100.0215
Go to article

Authors and Affiliations

Somaye Allahvaisi
1
Mahdi Hassani
2
Bahram Heidari
3

  1. Plant Protection Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  2. Sugar Beet Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  3. Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Dolichos ( Lablab purpureus L.) is a drought tolerant legume used as food/feed and improvement of soil fertility. The production of dolichos in Kenya, Nakuru County is however limited by insect pests like bean aphids, pod borers and whiteflies. Field studies were conducted to determine the effect of cropping systems (dolichos monocrop and maize-dolichos intercrop) and field margin vegetation on bean aphids and their natural enemies. The experiment was conducted in Njoro (high field margin vegetation) and Rongai (low field margin vegetation) during May- December 2019 and MarchNovember 2020 cropping seasons. Bean aphid percent incidence, severity of damage and abundance was assessed at seedling, early vegetative, late vegetative and flowering dolichos growth stages. The populations of natural enemies in the plots and field margin vegetation were monitored using pan traps and sweep nets. Species diversity and composition of the field margin vegetation was determined using a quadrat. Results showed that location and cropping system had significant effects on bean aphid infestations. A high bean aphid incidence (38.13%) was observed in Njoro compared to Rongai (31.10%). Dolichos monocrop had significantly higher bean aphid infestation (51.63%) than the maize-dolichos intercrop system (24.62%). A highly diverse Shannon-weaver index was observed in Rongai (1.90) compared to Njoro (1.67). Dolichos monocrop had a more diverse Shannon-weaver index (1.8) than the maize-dolichos intercrop system (1.7). Rongai had the most abundant annual and perennial field margin vegetation species. The field margin species richness and diversity were higher in Rongai (81%) than in Njoro (54%). The findings of this study have demonstrated that a maize-dolichos intercrop in Rongai can reduce bean aphid damage in dolichos.
Go to article

Bibliography


Abate T., van Huis A., Ampofo J.K.O. 2000. Pest management strategies in traditional agriculture: an African perspective. Annual Review of Entomology 45 (1): 631-659. DOI: https://doi.org/10.1146/annurev.ento.45.1.631
Amaral D.S., Venzon M., Duarte M.V., Sousa F.F, Pallini A., Harwood J.D. 2013. Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biological Control 64 (3): 338-346. DOI: https://doi.org/10.1016/j.biocontrol.2012.12.006
Arnett R.H., Jacques R.L. 1981. Simon and Schuster's guide to insects. Simon and Schuster.
Asbjornsen H., Hernandez-Santana V., Liebman M., Bayala J., Chen J., Helmers M., Ong C.K., Schulte L.A. 2014. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renewable Agriculture and Food Systems 29 (2): 101-125. DOI: https://doi.org/10.1017/S1742170512000385
Bajwa A.A., Mahajan G., Chauhan B.S. 2015. Nonconventional weed management strategies for modern agriculture. Weed Science 63 (4): 723-747. DOI: https://doi.org/10.1614/WS-D-15-00064.1
Balzan M.V., Moonen A.C. 2014. Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomologia Experimentalis et Applicata 150 (1): 45-65. DOI: https://doi.org/10.1111/eea.12142
Cheruiyot E.K., Mumera L.M., Nakhone L.N., Mwonga S.M. 2003. Effect of legume-managed fallow on weeds and soil nitrogen in following maize ( Zea mays L.) and wheat ( Triticum aestivum L.) crops in the Rift Valley highlands of Kenya. Australian Journal of Experimental Agriculture 43 (6): 597-604. DOI: https://doi.org/10.1071/EA02033
Cullis C., Kunert K.J. 2017. Unlocking the potential of orphan legumes. Journal of Experimental Botany 68 (8): 1895-1903. DOI: https://doi.org/10.1093/jxb/erw437
Damalas C.A., Eleftherohorinos I.G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8 (5): 1402-1419. DOI: https://doi.org/10.3390/ijerph8051402
De Bello F., Lepš J., Sebastià, M.T. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29 (6): 801-810. DOI: https://doi.org/10.1111/j.2006.0906-7590.04683.x
Dixon A.F.G. 2012. Aphid ecology an optimization approach. Springer Science & Business Media.
Dixon A.F.G., Agarwala B.K. 1999. Ladybird-induced life-history changes in aphids. Proceedings of the Royal Society of London. Series B: Biological Sciences 266 (1428): 1549-1553.
Dostálek T., Rokaya M.B., Münzbergová Z. 2018. Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PloS One 13 (12): e0209149. DOI: https://doi.org/10.1371/journal.pone.0209149
Elsharkawy M.M., El-Sawy, M.M. 2015. Control of bean common mosaic virus by plant extracts in bean plants. International Journal of Pest Management 61 (1): 54-59. DOI: https://doi.org/10.1080/09670874.2014.990947
Farkas Á., Molnár R., Morschhauser T., Hahn I. 2012. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. The Scientific World Journal 2012: 138579. DOI: https://doi.org/10.1100/2012/138579
Farooq M., Jabran K., Cheema Z.A., Wahid A., Siddique K.H. 2011. The role of allelopathy in agricultural pest management. Pest Management Science 67 (5): 493-506. DOI: https://doi.org/10.1002/ps.2091
Forrest J.R. 2016. Complex responses of insect phenology to climate change. Current Opinion in Insect Science 17: 49-54. DOI: https://doi.org/10.1016/j.cois.2016.07.002
Glaze-Corcoran S., Hashemi M., Sadeghpour A., Jahanzad E., Afshar R.K., Liu X., Herbert S.J. 2020. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Advances in Agronomy 162: 199-256. DOI: https://doi.org/10.1016/bs.agron.2020.02.004
González E., Salvo A., Valladares G. 2020. Insects moving through forest-crop edges: a comparison among sampling methods. Journal of Insect Conservation 24 (2): 249-258. DOI: https://doi.org/10.1007/s10841-019-00201-6
Grez A.A., Gonzalez R.H. 1995. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia 103 (4): 471-474.
Guerrieri E., Digilio M.C. 2008. Aphid-plant interactions: a review. Journal of Plant Interactions 3 (4): 223-232.
He H.M., Liu L.N., Munir S., Bashir N.H., Yi W.A.N.G., Jing Y.A.N.G., Li C.Y. 2019. Crop diversity and pest management in sustainable agriculture. Journal of Integrative Agriculture 18 (9): 1945-1952. DOI: https://doi.org/10.1016/S2095-3119(19)62689-4
Hrček J., McLean A.H., Godfray H.C.J. 2016. Symbionts modify interactions between insects and natural enemies in the field. Journal of Animal Ecology 85 (6): 1605-1612. DOI: https://doi.org/10.1111/1365-2656.12586
Jaetzold R., Hornetz B., Shisanya C.A., Schmidt H. 2012. Farm management handbook of Kenya Vol I-IV (Western Central Eastern Nyanza Southern Rift Valley Northern Rift Valley Coast). Nairobi: Government Printers.
Khan Z.R., Pickett J.A. 2004. The ‘push-pull’strategy for stemborer management: a case study in exploiting biodiversity and chemical ecology. Ecological engineering for pest management: Advances in Habitat Manipulation for Arthropods. p. 155-164. In: “Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods” (S.D. Wratten, M.A. Altieri, G.M. Gurr, eds.). CABI International, Wallingford, Oxon (CABI)
Leksono A.S., Batoro J., Zairina A. 2018. Abundance and composition of arthropods in a paddy field collected by pan traps. In: AIP Conference Proceedings. AIP Publishing LLC, 2019, No. 1, p. 04002
Li J., Wang Z., Tan K., Qu Y., Nieh J.C. 2014. Giant Asian honeybees use olfactory eavesdropping to detect and avoid ant predators. Animal Behaviour 97: 69-76. DOI: https://doi.org/10.1016/j.anbehav.2014.08.015
Lopes T., Hatt, S. Xu, Q., Chen J., Liu Y. Francis F. 2016. Wheat (Triticum aestivum L.)‐based intercropping systems for biological pest control. Pest Management Science 72 (12): 2193-2202. DOI: https://doi.org/10.1002/ps.4332
Mahajan M., Fatima S. 2017. Frequency, abundance, and density of plant species by list count quadrat method. International Journal of Multidisciplinary Research 3 (7): 1-8.
Mbata G.N., Shu S., Phillips T.W. Ramaswamy S.B. 2004. Semiochemical cues used by Pteromalus cerealellae (Hymenoptera: Pteromalidae) to locate its host, Callosobruchus maculatus (Coleoptera: Bruchidae). Annals of the Entomological Society of America 97 (2): 353-360. DOI: https://doi.org/10.1093/aesa/97.2.353
Mkenda P., Mwanauta R., Stevenson P.C., Ndakidemi P., Mtei K. Belmain S.R. 2015. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS One 10 (11): e0143530. DOI: https://doi.org/10.1371/journal.pone.0143530
Nahashon C.K., Benson M.M., Stephen M.M. 2016. Effects of irrigated and rain-fed conditions on infestation levels of thrips (Thysanoptera: Thripidae) infesting Dolichos lablab (L.) in Eastern Kenya. African Journal of Agricultural Research 11 (18): 1656-1660. DOI: https://doi.org/10.5897/AJAR2015.10721
Njarui D.M.G. Mureithi J.G. 2010. Evaluation of lablab and velvet bean fallows in a maize production system for improved livestock feed supply in semiarid tropical Kenya. Animal Production Science 5 (3): 193-202. DOI: https://doi.org/10.1071/AN09137
Novgorodova T.A., Gavrilyuk A.V. 2012. The degree of protection different ants (Hymenoptera: Formicidae) provide aphids (Hemiptera: Aphididae) against aphidophages. European Journal of Entomology 109 (2): 187-196.
Perdikis D., Fantinou A., Lykouressis D. 2011. Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biological Control 59 (1): 13-21. DOI: https://doi.org/10.1016/j.biocontrol.2011.03.014
Pielou E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.
Quicke D.L. 2015. The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. John Wiley & Sons, 740 pp. DOI: https://doi.org/10.1002/9781118907085
Rekha C., Mallapur C.P. 2009. Studies on pests of dolichos beans in northern Karnataka. Agricultural Science 2: 407-409.
Root R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monograph 43 (1): 95-124. DOI: https://doi.org/10.2307/1942161
SAS Institute inc. 2002. SAS for Windows v. 8. Cary, NC, U.S.A.
Saunders M.E., Luck G.W. 2013. Pan trap catches of pollinator insects vary with habitat. Australian Journal of Entomology 52 (2): 106-113. DOI: https://doi.org/10.1111/aen.12008
Soetan K.O., Fafunso M.A. 2010. Studies on the proximate and mineral composition of three varieties of lablab beans (Lablab purpureus). International Journal of Applied Agricultural Research 5 (3): 291-300.
Songa J.M., Jiang N., Schulthess F., Omwega C. 2007. The role of intercropping different cereal species in controlling lepidopteran stem borers on maize in Kenya. Journal of Applied Entomology 131 (1): 40-49. DOI: https://doi.org/10.1111/j.1439-0418.2006.01116.x
Spafford R.D., Lortie C.J. 2013. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting? Ecology and Evolution 3 (10): 3347-3358. DOI: https://doi.org/10.1002/ece3.688
Sujayanand G.K., Sharma R.K., Shankarganesh K., Saha S. Tomar R.S. 2015. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Florida Entomologist 98 (1): 305-314. DOI: https://doi.org/10.1653/024.098.0149
Thejaswi L., Mohan I., Naik M., Majunatha M. 2007. Studies of population dynamics of pests’ complex of field beans (Lablab purpureus L.) and natural enemies of pod borers. Karnataka Agriculture Science 3: 399-402.
Tiroesele B., Obopile M., Karabo O. 2019. Insect diversity and population dynamics of natural enemies under sorghum-legume intercrops. Transactions of the Royal Society of South Africa 74 (3): 258-267. DOI: https://doi.org/10.1080/0035919X.2019.1658654
Vellichirammal N.N., Gupta P., Hall T.A., Brisson J.A. 2017. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proceedings of the National Academy of Sciences 114 (6): 1419-1423. DOI: https://doi.org/10.1073/pnas.1617640114
Wäckers F.L., Romeis J., van Rijn P. 2007. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annuals Review Entomology 52: 301-323. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091352
Webster B., Cardé R.T. 2017. Use of habitat odour by host‐seeking insects. Biological Reviews 92 (2): 1241-1249. DOI: https://doi.org/10.1111/brv.12281
Go to article

Authors and Affiliations

Christine N. Mwani
1
ORCID: ORCID
Jane Nyaanga
1
Erick K. Cheruiyot
1
Joshua O. Ogendo
1
Philip K. Bett
2
Richard Mulwa
1
Philip C. Stevenson
3
Sarah E.J. Arnold
3 4
Steven R. Belmain
3

  1. Crops, Horticulture and Soils, Egerton University, Kenya
  2. Biological Sciences, Egerton University, Kenya
  3. Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, UK
  4. Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
Download PDF Download RIS Download Bibtex

Abstract

The efficiency of a formulated salicylic acid (Zacha 11, 500 mg · l–1) and a Bacillus bioproduct (JN2-007, 1 × 107 cfu · ml–1) in controlling cassava root rot disease and enhancing growth was evaluated. The results revealed that cassava stalk soaking and foliage spraying with Zacha 11 formulation or Bacillus subtilis bioproduct could increase cassava growth at 60 days after planting under greenhouse conditions. Zacha 11 gave the tallest stem height (11.67 cm), the longest root length (18.91 cm) and the greatest number of roots (49.50). Fusarium root rot severity indices of all treated treatments were reduced, and were significantly lower than that of the water control. Plants treated with Zacha 11 and JN2-007 had disease severity reduction of 53.33 and 48.33%, respectively. Furthermore, all treatments increased the endogenous salicylic acid (SA) content in cassava plants at 24 inoculation with significant differences when compared to the untreated samples. The efficacy of Zacha 11 and JN2-007 was evaluated at two field locations, using two different cassava varieties, cv. Rayong 72 and CMR-89. The results showed that all elicitors could suppress root rot disease as well as bacterial leaf blight. Furthermore, the elicitors helped cassava plants cv. Rayong 72 and CMR-89 to increase tuber weight, yield and starch contents, compared to the water control. Thus, it is possible that these formulations could be effective in controlling diseases and increasing cassava productivity.
Go to article

Bibliography


Buensanteai N., Yuen G.Y. Prathuangwong S. 2009. Priming, signaling, and protein production associated with induced resistance by Bacillus amyloliguefaciens KPS46. World Journal of Microbiology & Biotechnology 25: 1275–1286.
Camila S.H., Mariana P.S., Luiz R.C.J., de Eder J.O., de Saulo A.S.O. 2018. Modelling growth characteristics and aggressiveness of Neoscytalidium hyalinum and Fusarium solani associated with black and dry root rot diseases on cassava. Tropical Plant Pathology 43: 422–432.
Chaisinboon O., Chontanawat J. 2011. Factors determining the competing use of Thailand’s cassava for food and fuel. 9th Eco-Energy and Materials Science and Engineering Symposium. Energy Procedia 9 (2): 216–229.
Charaensatapon R., Saelee T., Chulkod U., Cheadchoo S. 2014. Phytophthora root and tuber of cassava in Thailand. Field and renewable energy crops research institute. Department of agriculture, Thailand. Proceedings of 5th Asian Conference on Plant Pathology. 3–6 November, Chiang Mai, Thailand.
Chávez-Arias C.C., Gómez-Caro S., Restrepo-Díaz H. 2020. Physiological responses to the foliar application of synthetic resistance elicitors in cape gooseberry seedlings infected with Fusarium oxysporum f.sp. physali. Plants 9 (2): 176.
Duchanee S. 2015. Identification of the causal fungi of stem and root black rot disease in cassava. Master’s Thesis, School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Thailand.
Gawade B., Sirohi A. 2011. Induction of resistance in eggplant (Solanum melongena) by salicylic acid against root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology 41 (2): 201–205.
Gharib F.A. 2006. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. International Journal of Agriculture and Biology 4: 485–492.
Hadi M.R., Balali G.R. 2010. The effect of salicylic acid on the reduction of Rizoctonia solani damage in the tubers of Marfona potato cultivar. Journal of Agricultural and Environmental Sciences 7 (4): 492–496.
Hayat S., Ahmad A. 2007. Salicylic Acid a Plant Hormone. Springer Publishers Dordrecht, The Netherlands.
Hayat Q., Hayat S., Irfana M., Ahmad A. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68: 14–25.
Hinarejos E., Castellano M., Rodrigo I., Belles J.M., Conejero V., Lopez-Gresa M.P., Lison P. 2016. Bacillus subtilis IAB/BS03 as a potential biological control. European Journal of Plant Pathology 146: 597–608.
Jakrawatana N., Pingmuangleka P., Gheewala S.H. 2015. Material flow management and cleaner production of cassava processing for future food, feed and fuel in Thailand. Journal of Cleaner Production 134: 633–641.
Javaheri M., Mashayekhi K., Dadkhah A., Tavallaee F.Z. 2012. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). International Journal of Agriculture and Crop Sciences 4 (16): 1184–1187.
Jonathan G.S., Diabaté S., Joseph K.K., Odette D.D., Yves-Alain B. 2015. Improvement of cassava resistance to Colletotrichum gloeosporioïdes by salicylic acid, phosphorous acid and fungicide Sumi 8. . International Journal of Current Microbiology and Applied Sciences 4 (3): 854–865.
Khandaker L., Masum A.S.M.G., Shinya O.B.A. 2011. Foliar application of salicylic acid improved the growth, yield and leaf’s bioactive compounds in red amaranthus (Amaranthus tricolor). Vegetable Crops Research Bulletin 74: 77–86.
Kloepper J.W., Ryu C.M., Zhang S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259–1266.
Le Thanh T., Thumanu K., Wongkaew S., Boonkerd N., Teaumroong N., Phansak P., Buensanteai N. 2017. Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. Oryzae in rice. Journal of Plant Interactions 12 (1): 108–120.
Malandrakis A., Daskalaki E.R., Skiada V., Papadopoulou K.K., Kavroulakis N. 2018. A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f.sp. radicis-lycopersici - tomato pathosystem. Fungal Biology 122: 1215–1221.
Narasimhan A., Shivakumar S. 2016. Biocontrol of Rhizoctonia solani root rot of chilli by Bacillus subtilis formulations underpot conditions. Journal of Biological Control 30 (2): 109–118.
Nikaji J., Saengchan C., Wongkeaw S., Buensanteai S., Athinuwat D., Buensanteai N. 2015. Efficacy of bioformulation against Erwinia carotovora pv. carotovora, causal agent of soft rot disease in Chinese cabbage. p. 127–134. In: Proceedings of the 2015 International Forum-Agriculture, Biology and Life Science (IFABL). 23–25 June 2015, Sapporo, Japan.
Onyeka T.J., Ekpo E.J.A., Dixon A.G.O. 2005. Identification of levels of resistance to cassava root rot disease (Botryodiplodia theobromae) in African landraces and improved germplasm using in vitro inoculation method. Euphytica 145: 281–288.
Panuweta P., Siriwongb W., Prapamontolc T., Ryana P.B., Fiedlerd N., Robsone M.G., Barr D.B. 2013. Agricultural pesticide management in Thailand: Situation and population health risk. Environmental Science and Policy 17: 72–81.
Patil S., Sriram S., Savitha M.J. 2011. Evaluation of non-pathogenic Fusarium for antagonistic activity against Fusarium wilt of tomato. Journal of Biological Control 25 (2): 118–123.
Prakongkha I., Sompong M., Wongkaew S., Athinuwat D., Buensanteai N. 2013. Foliar application of systemic acquired resistance (SAR) inducers for controlling grape anthracnose caused by Sphaceloma ampelinum deBary in Thailand. African Journal of. Biotechnology 12 (33): 5140–5147.
Piyachomkwan K., Tanticharoen M. 2011. Cassava industry in Thailand prospects. The Journal of the Royal Institute of Thailand 3: 160–170.
Polthanee A., Janthajam C. Promkhambut A. 2014. Growth, yield and starch content of cassava following rainfed lowland rice in northeast Thailand. International Journal of Agricultural Research 9: 319–324.
Prathuangwong S., Kasem S. 2004. Screening and evaluation of thermotolerant epiphytic bacteria from soybean leaves for controlling bacterial pustule disease. Thai Journal of Agricultural Science 37: 1–8.
Prathuangwong S., Buensanteai N. 2007. Bacillus amyloliquefaciens induced systemic resistance against bacterial pustule pathogen with increased phenols peroxides and 1 3-β-glucanase in soybean plant. Acta Phytopathologica et Entomologica Hungarica 42: 321–330.
Raskin I., Turner I., Melander W.R. 1989. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences 86: 2214–2218.
Romkhambut R. 2015. Effect of stake storage methods on germination, growth and yield of cassava (Manihot esculenta Crantz.). International Journal of Environmental and Rural Development 6 (2): 110–114.
Rozhon W, Petutschnig E, Wrzaczek M, Jonak C. 2005. Quantification of free and total salicylic acid in plants by solid-phase extraction and isocratic high-performance anion-exchange chromatography. Analytical and Bioanalytical Chemistry 382: 1620–1627.
Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Kloepper J.W., Pareì P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134: 1017–1026.
Sangpueak R., Phansak P., Buensanteai N. 2018. Morphological and molecular identification of Colletotrichum species associated with cassava anthracnose in Thailand. Journal of Phytopathology 166: 129–142.
Sompong M., Wongkaew S., Tantasawat P., Buensanteai N. 2012. Morphological pathogenicity and virulence characterization of Sphaceloma ampelinum the causal agent of grape anthracnose in Thailand. African Journal of Microbiology Research 6 (10): 2313–2320.
Song M., Yun H.Y., Kim Y.H. 2014. Antagonistic Bacillus species as a biologicalcontrol of ginseng root rot caused by Fusarium cf. incarnatum. Journal of Ginseng Research 38 (2): 136–145.
Sriket S., Thanachit S., Anusontpornperm S. 2015. Effect of fertilizer rates on cassava grown on Yasothon soil amended with cassava stem base biochar and wastes from cassava starch manufacturing plant. Khon Kaen Agriculture Journal 43 (4): 755–762.
Terry E.R., Hahn S.K. 2009. The effect of cassava mosaic disease on growth and yield of a local and an improved variety of cassava. Journal of Pest Management 26: 34–37.
Treesilvattanakul K. 2016. Deterministic factors of Thai cassava prices: multi-uses of cassava from food feed and fuel affecting on Thai cassava price volatility. p. 12–16. In: ICoA Conference Proceedings. 7–9 November, Matsuyama, Japan.
Vallad G.E., Goodman R.M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 44: 1920–1934.
Wokocha R.C., Nneke N.E., Umechurba C.I. 2010. Screening Colletotrichum gloeospoeioides f.sp. manihotis isolates for virulence on cassava in Akwa Ibom State of Nigeria. Journal of Agriculture, Science and Technology 9: 56–63.
Yildirim E., Guvenc I., Karatas A. 2006. Effect of different number foliar salicylic acid applications on plant growth and yield of cucumber. VI. Turkey National Vegetable Symposium September. 19–22 2006, Kahramanmaras, Turkey.
Zhang Y., Shi X., Li B., Zhang Q., Liang W., Wang C. 2016. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology and Biochemistry 106: 64–72.
Go to article

Authors and Affiliations

Chanon Saengchan
1
ORCID: ORCID
Piyaporn Phansak
2
Toan Le Thanh
3
Narendra Kumar Papathoti
1 4
Natthiya Buensanteai
1

  1. School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
  2. Division of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
  3. Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho, Vietnam
  4. Research and Development Division, Sri Yuva Biotech Pvt Ltd, Hyderabad, Telangana, India
Download PDF Download RIS Download Bibtex

Abstract

Over the last decade, an expansion of sugar beet weevil has been observed in Poland, damaging seedlings of sugar beet plants. The distribution of damage caused by this species in Poland is presented. The expansion of the distribution of losses was illustrated on the UTM map in 2-year intervals.
Go to article

Bibliography


Auersch O. 1954. Über die vorbereitung, Biologie, Histologie und Epidemiologie des Rübenderbrüsslers (Bothynoderes punctiventris Germ.). Wissenschaftliche Zeitschrift der Martin-Luter-Universität Halle Wittenberg 3: 601–658.
Auersch O. 1961. Zur Kenntnis des Rübenderbrüsslers (Bothynoderes punctiventris Germ.). Journal of Applied Entomology 49: 242–264.
Dobek M., Nowosad M., Wereski S. 2015. Biothermal and meteorological weather classification in the Lublin area in the period 1976–2010. Annales Universitatis Mariae Curie-Skłodowska. Lublin – Polonia. Sectio B. 70 (1): 83–94. DOI: https://doi.org/10.17951/b.2015.70.1.83
Drmić Z., Čačija M., Virić Gašparić H., Lemić D., & Bažok R. 2019. Phenology of the sugar beet weevil, Bothynoderes punctiventris Germar (Coleoptera: Curculionidae), in Croatia. Bulletin of Entomological Research 109 (4): 518–527. DOI: https://doi.org/10.1017/S000748531800086X
Kamiński E. 1937. Szarek buraczany (Bothynoderes punctiventris Germ.) na Wołyniu. [ Sugar beet weevil (Bothynoderes punctiventris Germ.) in Volhynia]. Rocznik Ochrony Roślin 4 (4): 12–29. [Available on: http://sbc.org.pl/Content/278402/ii149448-1937-04-0001.pdf]
Muška F., Krejcar Z. 2009: Škodlivé výskyty rýhonosce řepnéhona cukrové a krmné řepě na území České republiky. Historický přehled do roku 2005 [Damaging presence of beetroot weevil on sugar beet and fodder beet in the Czech Republic – historical summary until 2005]. Listy Cukrovarnické a Repařské 12: 348–350.
Porter J.H., Parry M.L., Carter T.R. 1991. The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57 (1–3): 221–240. DOI: https://doi.org/10.1016/0168-1923(91)90088-8
Tielecke H. 1952. Biologie, epidemiologie und bekämpfung des rübenderbrüßlers. Beiträge zur Entomologie [Contributions to Entomology] 2 (2–3): 256–315.
Go to article

Authors and Affiliations

Zdzisław Klukowski
1
Jacek Piszczek
2

  1. Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  2. Regional Experimental Station, Institute of Plant Protection – National Research Institute (IPP – NRI), Poznań, Poland

Instructions for authors

Instructions for Authors

Manuscripts published in JPPR are free of charge. Only colour figures and photos are payed 61.5 € per one colour page JPPR publishes original research papers, short communications, critical reviews, and book reviews covering all areas of modern plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds, etc. Submitted manuscripts should provide new facts or confirmatory data. All manuscripts should be written in high-quality English. Non-English native authors should seek appropriate help from English-writing professionals before submission. The manuscript should be submitted only via the JPPR Editorial System (http://www.editorialsystem.com/jppr). The authors must also remember to upload a scan of a completed License to Publish (point 4 and a handwritten signature are of particular importance). ALP form is available at the Editorial System. The day the manuscript reaches the editors for the first time is given upon publication as the date ‘received’ and the day the version, corrected by the authors is accepted by the reviewers, is given as the date ‘revised’. All papers are available free of charge at the Journal’s webpage (www.plantprotection.pl). However, colour figures and photos cost 61.5 € per one colour page.

General information for preparing a manuscript

All text should be written in a concise and integrated way, by focusing on major points, findings, breakthrough or discoveries, and their broad significance. All running text should be in Times New Roman 12, 1.5 spacing with all margins 2.5 cm on all sides.

Original article

The original research articles should contain the following sections: Title – the title should be unambiguous, understandable to specialists in other fields, and must reflect the contents of the paper. No abbreviations may be used in the title. Name(s) of author(s) with affiliations footnoted added only to the system, not visible in the manuscript (Double Blind Reviews). The names of the authors should be given in the following order: first name, second name initial, surname. Affiliations should contain: name of institution, faculty, department, street, city with zip code, and country. Abstract – information given in the title does not need to be repeated in the abstract. The abstract should be no longer than 300 words. It must contain the aim of the study, methods, results and conclusions. If used, abbreviations should be limited and must be explained when first used. Keywords – a maximum of 6, should cover the most specific terms found in the paper. They should describe the subject and results and must differ from words used in the title. Introduction – a brief review of relevant research (with references to the most important and recent publications) should lead to the clear formulation of the working hypothesis and aim of the study. It is recommended to indicate what is novel and important in the study. Materials and Methods – in this section the description of experimental procedures should be sufficient to allow replication. Organisms must be identified by scientific name, including authors. The International System of Units (SI) and their abbreviations should be used. Methods of statistical processing, including the software used, should also be listed in this section. Results – should be presented clearly and concisely without deducting and theori sing. Graphs should be preferred over tables to express quantitative data. Discussion – should contain an interpretation of the results ( without unnecessary repetition) and explain the influence of experimental factors or methods. It should describe how the results and their interpretation relate to the scientific hypothesis and/or aim of the study. The discussion should take into account the current state of knowledge and up-to-date literature. It should highlight the significance and novelty of the paper. It may also point to the next steps that will lead to a better understanding of the matters in question. Acknowledgements – of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full. References In the text, papers with more than two authors should be cited by the last name of the first author, followed by et al. (et al. in italics), a space, and the year of publication (example: Smith et al. 2012). If the cited manuscript has two authors, the citation should include both last names, a space, and the publication year (example: Marconi and Johnston 2006). In the Reference section, a maximum of ten authors of the cited paper may be given. All references cited in the text must be listed in the Reference section alphabetically by the last names of the author(s) and then chronologically. The year of publication follows the authors’ names. All titles of the cited articles should be given in English. Please limit the citation of papers published in languages other than English. If necessary translate the title into English and provide information concerning the original language in brackets (e.g. in Spanish). The list of references should only include works from the last ten years that have had the greatest impact on the subject. Older references can be cited only if they are important for manuscript content. The full name of periodicals should be given. If possible, the DOI number should be added at the end of each reference. The following system for arranging references should be used: Journal articles Jorjani M., Heydari A., Zamanizadeh H.R., Rezaee S., Naraghi L., Zamzami P. 2012. Controlling sugar beet mortality disease by application of new bioformulations. Journal of Plant Protection Research 52 (3): 303-307. DOI: https://doi.org/10.2478/v10045-012-0049-9 Online articles Turner E., Jacobson D.J., Taylor J.W. 2011. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genetics 7 (8): e1002204. DOI: https://doi.org/10.1371/journal.pgen.1002204 Books Bancrof J.D., Stevens A. 1996. Theory and Practice of Histological Techniques. 4th ed. Churchill Livingstone, Edinburgh, UK, 776 pp. Book chapters Pradhan S.K. 2000. Integrated pest management. p. 463-469. In: "IPM System in Agriculture. Cash Crop" (R.K. Upadhyaya, K.G. Mukerji, O.P. Dubey, eds.). Aditya Books Pvt. Ltd. New Delhi, India, 710 pp. Online documents Cartwright J. 2007. Big stars have weather too. IOP Publishing PhysicsWeb. Available on: https://doi.org/10.1371/journal.pgen.1002204

Tables, Figures, Phothographs, Drawings

Tables and figures should be uploaded as separated files at the submission stage. Their place in the manuscript should be clearly indicated by authors. Colour figures are accepted at no charge for the electronic version. In the hardcopy version of the journal, colour figures cost (65,5 € per one colour page). When attaching files please indicate if you want colour only in the online version or in both the online and the hardcopy. Photographs and RGB bitmaps should be provided in JPG or TIFF file format. They must have no less than 300 dpi resolution. The text column should be 8 cm wide and they must be at least 1000 pixels wide. Please send original (not resized) photograph(s), straight from a digital camera, without any text descriptions on the photo. Bitmaps combined with text object descriptions should be provided in MS Word or MS Powerpoint format. Text objects using Arial font-face should be editable (changing font-face or font size). Drawings should be provided in MS Word, MS Powerpoint, CorelDRAW or EPS file format and stored with original data file. Text objects using Arial font-face should be editable (changing font-face or font size). Charts (MS Excel graphs) should be provided in MS Excel file format, and stored with original MS Excel data file without captions but with the number of the figure attached. Please do not use bitmap fills for bar charts. Use colour fills only if necessary. Captions and legends should be added at the end of the text, referred to as "Fig." and numbered consecutively throughout the paper.

Rapid communications

Rapid communications should present brief observations which do not warrant the length of a full paper. However, they must present completed studies and follow the same scientific standards as original articles. Rapid communications should contain the following sections: Title Abstract - less than 300 words Key words - maximum 6 Text body Acknowledgements References The length of such submissions is limited to 1500 words for the text, one table, and one figure.

Reviews

Review articles are invited by the editors.Unsolicited reviews are also considered. The length is limited to 5000 words with no limitations on figures and tables and a maximum of 150 references. Mini-Review articles should be dedicated to "hot" topics and limited to 3000 words and a maximum two figures, two tables and 20 references.

This page uses 'cookies'. Learn more