Science and earth science

Polish Polar Research

Content

Polish Polar Research | 2015 | No 4 |

Abstract

Radiometric and geochemical studies were carried out at Red Hill in the southern part of King George Island (South Shetland Islands, northern Antarctic Peninsula) on the Bransfield Strait coast. The rock succession at Red Hill has been determined to represent the Baranowski Glacier Group that was previously assigned a Late Cretaceous age. Two formations were distinguished within this succession: the lower Llano Point Formation and the upper Zamek Formation. These formations have stratotypes defined further to the north on the western coast of Admiralty Bay. On Red Hill the Llano Point Formation consists of terrestrial lavas and pyroclastic breccia; the Zamek Formation consist predominantly of fine to coarse tuff, pyroclastic breccia, lavas, tuffaceous mud− , silt−, and sandstone, locally conglomeratic. The lower part of the Zamek Formation contains plant detritus (Nothofagus , dicotyledonous, thermophilous ferns) and numerous coal seams (vitrinitic composition) that confirm the abundance of vegetation on stratovolcanic slopes and surrounding lowlands at that time. Selected basic to intermediate igneous rocks from the succession have been analysed for the whole−rock K−Ar age determination. The obtained results indicate that the Red Hill succession was formed in two stages: (1) from about 51–50 Ma; and (2) 46–42 Ma, i.e. during the Early to Middle Eocene. This, in combination with other data obtained from other Baranowski Glacier Group exposures on western coast of Admiralty Bay, confirms the recently defined position of the volcano−clastic succession in the stratigraphic scheme of King George Island. The new stratigraphic position and lithofacies development of the Red Hill succession strongly suggest its correlation with other Eocene formations containing fossil plants and coal seams that commonly occur on King George Island.
Go to article

Abstract

Bryozoans were found in upper Cenozoic diamictite debris that crops out at the southwestern tip of Cape Lamb, Vega Island. The diamictite is the youngest deposit on the island and richly composed of foraminifers, brachiopods and scallops. The foraminifera assemblage recovered from the Cape Lamb diamictite and 87 Sr/ 86 Sr isotopic age obtained from the pectinid Adamussium colbecki in the nearby locality of Terrapin indicates a Pleistocene age for this deposit. The main goal of this contribution is to present a bryozoan assemblage of Microporella stenoporta Hayward et Taylor, Hippothoa flagellum Manzoni, Ellisina antarctica (Kluge), Micropora notialis Hayward et Ryland and an indeterminate crisiid constituting the first record of these bryozoan taxa in Cenozoic diamictites of the Antarctic Peninsula.
Go to article

Abstract

The tarsometatarsus, a compound bone from the lower leg in birds, is the most important skeletal element in fossil penguin taxonomy, especially in the case of early members of this group. However, any attempt to go beyond the problem of mere classification obviously requires the better understanding of osteological traits under consideration. This in turn touches on the issue of interplay between bone and concomitant soft−tissue structures, such as muscles, tendons and vessels. This paper focuses on the more holistic comprehension of the tarsometatarsal section of the Eocene penguin foot, based on the analysis of the myology and the vascular system of its modern counterparts. A number of graphical reconstructions are provided with a discussion of the role of the hypotarsus and inter− metatarsal foramina.
Go to article

Abstract

Glacierized fjords are dynamic regions, with variable oceanographic conditions and complex ice−ocean interactions, which are still poorly understood. Recent studies have shown that passive underwater acoustics offers new promising tools in this branch of polar research. Here, we present results from two field campaigns, conducted in summer 2013 and spring 2014. Several recordings with a bespoke two−hydrophone acoustic buoy were made in different parts of Hornsund Fjord, Spitsbergen in the vicinity of tidewater glaciers to study the directionality of underwater ambient noise. Representative segments of the data are used to illustrate the analyses, and determine the directions of sound sources by using the time differences of arrivals between two horizontally aligned, broadband hydrophones. The results reveal that low frequency noise (< 3 kHz) is radiated mostly from the ice cliffs, while high−frequency (> 3 kHz) noise directionality strongly depends on the distribution of floating glacial ice throughout the fjord. Changing rates of iceberg production as seen for example in field photographs and logs are, in turn, most likely linked to signal amplitudes for relevant directions. These findings demonstrate the potential offered by passive acoustics to study the dynamics of individual tidewater glaciers.
Go to article

Abstract

A section of a gravel−dominated coast in Isbjørnhamna (Hornsund, Svalbard) was analysed to calculate the rate of shoreline changes and explain processes controlling coastal zone development over last 50 years. Between 1960 and 2011, coastal landscape of Isbjørnhamna experienced a significant shift from dominated by influence of tide−water glacier and protected by prolonged sea−ice conditions towards storm−affected and rapidly changing coast. Information derived from analyses of aerial images and geomorphological mapping shows that the Isbjørnhamna coastal zone is dominated by coastal erosion resulting in a shore area reduction of more than 31,600 m 2 . With ~3,500 m 2 of local aggradation, the general balance of changes in the study area of the shore is negative, and amounts to a loss of more than 28,000 m 2 . Mean shoreline change is −13.1 m (−0.26 m a −1 ). Erosional processes threaten the Polish Polar Station infrastructure and may damage of one of the storage buildings in nearby future.
Go to article

Abstract

Dynamic climate changes have become noticeable in recent decades, especially in the vulnerable region of the West Antarctic. The relatively simple food web of this area relies on krill – Euphausia superba . Presumably, as a result of climatic fluctuations, a de− crease in the number of this crustacean has been recorded, followed by an increase in the population of the gelatinous zooplankter Salpa thompsoni . In the research presented herein, population and morphometric analyses of Salpa thompsoni have been conducted. Specimens for this research were collected from the Drake Passage, using a Bongo net in the summer season of 2010. It has been found that the horizontal distribution of this gelatinous zooplankter was significantly irregular (Kruskal−Wallis test, p < 0.001). In the northern part of the investigated area, both blastozooids and oozooids were recorded, which confirms the dynamic development of this species. The central part of the Drake Passage was characterized by the dominance of blastozooids, with embryos found at different stages of the development. Only in the region of the South Shetland Islands, the salpid population was characterized by reduced or even stopped reproduction. The immense reproductive efficiency observed in the Salpa thompsoni population was mostly induced by the favourable thermal conditions. These observations may suggest that the ongoing climat changes in the West Antarctic will promote the population expansion of this species.
Go to article

Abstract

Fifteen species of isopods, representing 10 families, were recorded on holdfasts of the brown alga Himantothallus grandifolius . Material was collected in the 15–75 m depth range during the austral summer of 1979/80. The isopod community was dominated by Caecognathia antarctica (mean density 12.4 ± 13.1 ind./100 ml) followed by Cymodocella tubicauda (mean density 0.7 ± 2.1 ind./100 ml). Mean total density of isopods reached the value of 16.1 ± 14.0 ind./100 ml. The comparison with the other studies showed that hold− fasts are inhabited by a distinctive isopod community that differs from the isopod fauna associated with soft bottom of Admiralty Bay.
Go to article

Editorial office

Editors-in-Chief

Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail: wmaj@twarda.pan.pl

Associate Editors
Krzysztof HRYNIEWICZ (Warszawa),
e-mail:krzyszth@twarda.pan.pl
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Piotr Pabis (Łódź),
e-mail: cataclysta@wp.pl
Krzysztof Jażdżewski (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl

Editorial Advisory Board
Krzysztof BIRKENMAJER (Kraków),
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Marek GRAD (Warszawa),
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków) - President,
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot)

Technical Editors
Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact

Geosciences
Wojciech MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone: (48 22) 697 88 53

Instytut Paleobiologii
Polska Akademia Nauk
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
Magdalena BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Instructions for authors

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers, dealing with all aspects of polar research. The journal aims to provide a forum for publication of high quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should be not longer than 30 typescript pages, including tables, figures and references. All papers are peer-reviewed. With the submitted manuscript authors should provide the names, addresses and e-mail addresses of three suggested reviewers.

Submission of an article implies that the work described has not been published previously nor is under consideration by another journal.

The contribution should be submitted as Word file. It should be prepared in single-column double-spaced format and 25 mm margins. Consult a recent issue of the journal for layout and conventions (http://www.versita.com/ppr). Prepare figures and tables as separate files. For computer-generated graphics, editor Corel Draw is preferred. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126 × 196 mm. The cost of color reproduction in print is EUR 80 per page, or equivalent in any convertible curency. Color artwork in PDF is free of charge.

Title should be concise and informative, no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. References in the text to papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

 

Examples:
ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge: 289 pp.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffi oyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).

 

The journal does not have article processing charges (APCs) nor article submission charges.

 

Twenty-five reprints of each article published are supplied free of charge. Additional charged reprints can be ordered.

 

Please submit your manuscripts to Polish Polar Research via email to Editors-in-Chief:

Magdalena BŁAŻEWICZ (Life Sciences) magdalena.blazewicz@biol.uni.lodz.pl

Wojciech MAJEWSKI (Geosciences) wmaj@twarda.pan.pl

 

Abstracting & Indexing

Polish Pola r Research is covered by the following services:

    AGRICOLA (National Agricultural Library)

    AGRO

    Arianta

    Baidu Scholar

    Cabell's Directory

    CABI (over 50 subsections)

    Celdes

    CNKI Scholar (China National Knowledge Infrastructure)

    CNPIEC

    Cold Regions Bibliography

    Current Antarctic Literature

    DOAJ (Directory of Open Access Journals)

    EBSCO (relevant databases)

    EBSCO Discovery Service

    Elsevier - Geobase

    Elsevier - Reaxys

    Elsevier - SCOPUS

    Genamics JournalSeek

    Google Scholar

    J-Gate

    JournalTOCs

    Naviga (Softweco)

    Polish Scientific Journals Contents

    Primo Central (ExLibris)

    ProQuest (relevant databases)

    ReadCube

    ResearchGate

    SCImago (SJR)

    Summon (Serials Solutions/ProQuest)

    TDOne (TDNet)

    Thomson Reuters - Biological Abstracts

    Thomson Reuters - BIOSIS Previews

    Thomson Reuters - Journal Citation Reports/Science Edition

    Thomson Reuters - Science Citation Index Expanded

    Thomson Reuters - Zoological Record

    Ulrich's Periodicals Directory/ulrichsweb

    WorldCat (OCLC)

 

Technical Editors

Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact:

 

Geosciences

Wojciech MAJEWSKI

e-mail: wmaj@twarda.pan.pl

phone: (48 22) 697 88 53

Instytut Paleobiologii

Polska Akademia Nauk

ul. Twarda 51/55

00-818 Warszawa, POLAND

 

Life Sciences

Magdalena BŁAŻEWICZ

e-mail: magdalena.blazewicz@biol.uni.lodz.pl

phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki

ul. S. Banacha 12/16

90-237 Łódź, POLAND

This page uses 'cookies'. Learn more