Nauki Techniczne

International Journal of Electronics and Telecommunications

Zawartość

International Journal of Electronics and Telecommunications | 2019 | vol. 65 | No 3 |

Abstrakt

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.

Przejdź do artykułu

Abstrakt

A wideband antenna with dual band characteristic at 5.33/14.3GHz with resonating frequencies for wireless applications is presented. The strategy of the design is to introduce multiband in antenna band. Bandwidth of the antenna increases by embedding annular ring on the radiating patch and four bands are achieved by introducing coupling gap between the patches. Surface current distribution is analyzed at different resonating frequencies for understanding the radiation mechanism and effect of annular ring. The antenna parameters such as return loss, radiation pattern, gain, VSWR and group delay are discussed. The impedance bandwidth of the proposed dual band antenna at lower resonant frequency is 12.7% (simulated) and 9.8 % (measured) whereas at upper resonant frequency is 15.3 % (simulated) and 13.97 % (measured).

Przejdź do artykułu

Abstrakt

Most of the developing countries economy largely depends on the agriculture. More than half of the population rely on agriculture related activities for their survival. In spite of dependency on agriculture, the technological development of agricultural work in developing country is not comparable to the countries like Australia or Israel. The main reason behind the lack of development is the small size of farms. Such farmers cannot afford expensive technology available in the market due to limited profit margins. The report describes an autonomous fertilization system that takes care of the fertilization requirements of the small scale farms at affordable rates. The system is divided in two parts namely User Interface and Control System. The user interface is designed using the state of the art Raspberry Pi board and a touch screen LCD. The control system is developed using the Arduino platform and can control five fertilizers at a time. The output of the system is the mix of the fertilizer, which is forced into the drip irrigation system of the farm. The system has built in data for the fertilization requirement for important crops and vegetation. The system also facilitates the customize fertilization requirements to be added in the system as per the user requirements.

Przejdź do artykułu

Abstrakt

This paper presents that the effect of single aperture size of metallic enclosure on electrical shielding effectiveness (ESE) at 0 – 1 GHz frequency range has been investigated by using both Robinson’s analytical formulation and artificial neural networks (ANN) methods that are multilayer perceptron (MLP) networks and a radial basis function neural network (RBFNN). All results including measurement have been compared each other in terms of aperture geometry of metallic enclosure. The geometry of single aperture varies from square to rectangular shape while the open area of aperture is fixed. It has been observed that network structure of MLP 3-40-1 in modeling with ANN modeled with fewer neurons in the sense of overlapping of faults and data and modeled accordingly. In contrast, the RBFNN 3-150-1 is the other detection that the network structure is modeled with more neurons and more. It can be seen from the same network-structured MLP and RBFNN that the MLP modeled better. In this paper, the impact of dimension of rectangular aperture on shielding performance by using RBFNN and MLP network model with ANN has been studied, as a novelty.

Przejdź do artykułu

Abstrakt

This paper proposes an advanced routing method in the purpose of increasing IoT routing device’s power-efficiency, which allows to centralize routing tables computing as well as to push loading, related to routing tables computation, towards the Cloud environment at all. We introduced a phased solution for the formulated task. Generally, next steps were performed: stated requirements for the system with Cloud routing, proposed possible solution, and developed the whole system’s structure. For a proper study of the efficiency, the experiment was conducted using the developed system’s prototype for real-life cases, each represents own cluster size (several topologies by each size), used sizes are: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29. Expectable results for this research – decrease the time of cluster’s reaction on topology changes (delay, needed to renew routing tables), which improves system’s adaptivity.

Przejdź do artykułu

Abstrakt

This paper is devoted to a detailed experimentally based analysis of applicability of vector network analyzers for measuring impedance of surface mount inductors with and without DC bias. The measurements are made using custommade bias tees and a test fixture with an ordinary vector network analyzer. The main attention in the analysis is focused on measurement accuracy of an impedance of surface mount inductors. Measurement results obtained with a vector network analyzer will also be compared to those obtained by using an impedance analyzer based on auto-balancing bridge method.

Przejdź do artykułu

Abstrakt

In this paper, the usage of graphene transistors is introduced to be a suitable solution for extending low power designs. Static and current mode logic (CML) styles on both nanoscale graphene and silicon FINFET technologies are compared. Results show that power in CML styles approximately are independent of frequency and the graphene-based CML (GCML) designs are more power-efficient as the frequency and complexity increase. Compared to silicon-based CML (Si-CML) standard cells, there is 94% reduction in power consumption for G-CML counterparts. Furthermore, a G-CML 4-bit adder respectively offers 8.9 and 1.7 times less power and delay than the Si-CML adder.

Przejdź do artykułu

Abstrakt

Due to increase in threats posed by offshore foundries, the companies outsourcing IPs are forced to protect their designs from the threats posed by the foundries. Few of the threats are IP piracy, counterfeiting and reverse engineering. To overcome these, logic encryption has been observed to be a leading countermeasure against the threats faced. It introduces extra gates in the design, known as key gates which hide the functionality of the design unless correct keys are fed to them. The scan tests are used by various designs to observe the fault coverage. These scan chains can become vulnerable to sidechannel attacks. The potential solution for protection of this vulnerability is obfuscation of the scan output of the scan chain. This involves shuffling the working of the cells in the scan chain when incorrect test key is fed. In this paper, we propose a method to overcome the threats posed to scan design as well as the logic circuit. The efficiency of the secured design is verified on ISCAS’89 circuits and the results prove the security of the proposed method against the threats posed.

Przejdź do artykułu

Abstrakt

The idea of using the Cloud of Things is becoming more critical for e-government, as it is considered to be a useful mechanism of facilitating the government’s work. The most important benefit of using the Cloud of Things concept is the increased productivity that the e-governments would achieve; which eventually would lead to significant cost savings; which in turn would have a highly anticipated future impact on egovernments. E-government’s diversity goals face many challenges; trust is one of the major challenges that it is facing when deploying the Cloud of Things. In this study, a new trust framework is proposed which supports trust with the Internet of Things devices interconnected to the cloud; to support the services that are provided by e-government to be delivered in a trusted manner. The proposed framework has been applied to a use case study to ensure its trustworthiness in a real mission. The results show that the proposed trust framework is useful to ensure achieving a trusted environment for the Cloud of Things for it to continue providing and gathering the data needed for the services that are offered by users through E-government.

Przejdź do artykułu

Abstrakt

The ILC is an immense e+e- machine planned since 2004 by a large international collaboration, to be potentially built in Japan [1]. The gigantic size of the whole research infrastructure, the involved human, technical and financial resources, and the pressure of new emerging and potentially soon to be competitive accelerator technologies, make the final building decision quite difficult. A vivid debate is carried on this subject globally by involved accelerator research communities. The European voice is very strong and important in this debate, and has recently been essentially refreshed by clear statements in a few official documents [2]. The final HEP European Strategy Document is just under preparation. This paper is a very modest and subjective voice in this debate originating from Poland, which around 50 researchers are present at the list of 2400 signatories for the original ILC TDR document published in 2013 [3].

Przejdź do artykułu

Abstrakt

This paper presents a novel low-complexity soft demapping algorithm for two-dimensional non-uniform spaced constellations (2D-NUCs) and massive order one-dimensional NUCs (1D-NUCs). NUCs have been implemented in a wide range of new broadcasting systems to approach the Shannon limit further, such as DVB-NGH, ATSC 3.0 and NGB-W. However, the soft demapping complexity is extreme due to the substantial distance calculations. In the proposed scheme, the demapping process is classified into four cases based on different quadrants. To deal with the complexity problem, four groups of reduced subsets in terms of the quadrant for each bit are separately calculated and stored in advance. Analysis and simulation prove that the proposed demapper only introduces a small penalty under 0.02dB with respect to Max-Log-MAP demapper, whereas a significant complexity reduction ranging from 68.75% to 88.54% is obtained.

Przejdź do artykułu

Abstrakt

Cross layer cooperative protocol which exploits the benefits of physical layer cooperative communication, is one of the widely recognized MAC layer protocol design strategies for future wireless networks. This paper presents performance analysis of a cooperative mac and these performance parameters are compared those of the legacy IEEE 802.11 DCF MAC. Appropriate relay station selection is the main hurdle in designing efficient cooperative MAC protocol for wireless networks. This cooperative mac demonstrated that intermediate relay nodes themselves can initiate cooperation for relaying data frame to the receiver on behalf of the sender. This procedure makes the selection process of a “helper node” more distributed in nature as well as it contributes to increase throughput of a wireless network by reducing the overheads that are usually incurred in the helper selection process. It has been shown by thorough analytical analysis that the proposed cooperative MAC protocol offers higher throughput and lower frame transmission delay in both ideal and error prone wireless environment. These performance metrics are also evaluated while the wireless nodes are mobile as well.

Przejdź do artykułu

Abstrakt

This paper presents a baseband model and an enhanced implementation of the wireless full duplex analog method introduced by [1].Unlike usual methods based on hardware and software self- interference cancelation, the proposed design relies on FSK modulation. The principle is when the transmitter of a local end is sending data by modulating the carrier with the appropriate frequency deviation, its own receiver is checking if the remote transmitter is using the opposite deviation. Instead of architectures often used by both non-coherent and coherent receivers that require one filter (matched filter for coherent detection) for each frequency deviation, our design uses one mixer and one single integrator-decimator filter. We test our design using Universal Software Radio Peripheral as radio frequency front end and computer that implements the signal processing methods under free and open source software. We validate our solution experimentally and we show that in-band full duplex is feasible and synthesizable for wireless communications.

Przejdź do artykułu

Abstrakt

Wireless body area network (WBAN) has evolved from Wireless personal area network (WPAN), a prominent area of research with vast applications in last decade. In WBAN, various wirelessly interconnected body node (BN) are implanted in or around the human body. Also due to advancement in technology a miniature low power device/BN is developed. The main challenge in WBAN body node is to maintain finite size of battery as well as to increase its capacity. Hence this issue can be resolved by using energy harvesting. Generally researchers have used piezoelectric, electromagnetic or solar harvester only. But, in this research energy harvesting using the hybrid optimization of Piezoelectric and Peltier sensors by controlling on-off timing of body nodes is introduced. A hybrid optimized algorithm is developed using MATLAB 2015b platform and extensive simulation is performed considering four different human gestures (relaxing, walking, running and fast running) which in turn improves overall Quality of Service (QoS) including average (packet loss, end to end delay, throughput) and overall detection efficiency.

Przejdź do artykułu

Abstrakt

Orthogonal frequency division multiple access (OFDMA) in Long Term Evolution (LTE) can effectively eliminate intra-cell interferences between the subcarriers in a single serving cell. But, there is more critical issue that, OFDMA cannot accomplish to decrease the inter-cell interference. In our proposed method, we aimed to increase signal to interference plus noise ratio (SINR) by dividing the cells as cell center and cell edge. While decreasing the interference between cells, we also aimed to increase overall system throughput. For this reason, we proposed a dynamic resource allocation technique that is called Experience-Based Dynamic Soft Frequency Reuse (EBDSFR). We compared our proposed scheme with different resource allocation schemes that are Dynamic Inter-cellular Bandwidth Fair Sharing FFR (FFRDIBFS) and Dynamic Inter-cellular Bandwidth Fair Sharing Reuse-3 (Reuse3DIBFS). Simulation results indicate that, proposed EBDSFR benefits from overall cell throughput and obtains higher user fairness than the reference schemes.

Przejdź do artykułu

Abstrakt

This article presents the results of the research of noiseimmunity of wireless communication systems using signals that are formed on the basis of eight-position quadrature-amplitude modulation (8-QAM) and eight-position amplitude modulation of many components (8-AMMC). The research was conducted using simulation of a wireless communication system, built using a detector, implemented on the basis of a phase locked loop. The influence of phase locked loop parameters on the detection quality of these signals in the condition of the interference in the communication channel was researched, and a comparative analysis of the noise immunity of wireless communication systems using these signals was carried out.

Przejdź do artykułu

Abstrakt

In this paper, we estimate the upper limit of the transmission data rate in airborne ultrasonic communications, under condition of the optimal power allocation. The presented method is based on frequency response of a channel in case of single-path LOS propagation under different climatic conditions and AWGN background noise model, and it can be easily extended to the case of frequency-dependent noise. The obtained results go beyond the discrete distances for which experimental SNR values were available, and are more accurate than the previous calculations in the literature, due to the inclusion of the channel frequency response and its changes over the distance. The impact of air temperature, relative humidity and the atmospheric pressure on the channel capacity is also investigated. The presented results can serve as a reference during the design of airborne ultrasonic communication systems operating in the far-field region.

Przejdź do artykułu

Abstrakt

Optimal random network coding is reduced complexity in computation of coding coefficients, computation of encoded packets and coefficients are such that minimal transmission bandwidth is enough to transmit coding coefficient to the destinations and decoding process can be carried out as soon as encoded packets are started being received at the destination and decoding process has lower computational complexity. But in traditional random network coding, decoding process is possible only after receiving all encoded packets at receiving nodes. Optimal random network coding also reduces the cost of computation. In this research work, coding coefficient matrix size is determined by the size of layers which defines the number of symbols or packets being involved in coding process. Coding coefficient matrix elements are defined such that it has minimal operations of addition and multiplication during coding and decoding process reducing computational complexity by introducing sparseness in coding coefficients and partial decoding is also possible with the given coding coefficient matrix with systematic sparseness in coding coefficients resulting lower triangular coding coefficients matrix. For the optimal utility of computational resources, depending upon the computational resources unoccupied such as memory available resources budget tuned windowing size is used to define the size of the coefficient matrix.

Przejdź do artykułu

Abstrakt

In this paper, we present some useful results related with the sampling theorem and the reconstruction formula. The first of them regards a relation existing between bandwidths of interpolating functions different from a perfectreconstruction one and the bandwidth of the latter. Furthermore, we prove here that two non-identical interpolating functions can have the same bandwidths if and only if their (same) bandwidth is a multiple of the bandwidth of an original unsampled signal. The next result shows that sets of sampling points of two nonidentical (but not necessarily interpolating) functions possessing different bandwidths are unique for all sampling periods smaller or equal to a given period (calculated in a theorem provided). These results are completed by the following one: in case of two different signals possessing the same bandwidth but different spectra shapes, their sets of sampling points must differ from each other.

Przejdź do artykułu

Abstrakt

This paper describes the arithmetic blocks based on Montgomery Multiplier (MM), which reduces complexity, gives lower power dissipation and higher operating frequency. The main objective in designing these arithmetic blocks is to use modified full adder structure and carry save adder structure that can be implemented in algorithm based MM circuit. The conventional full adder design acts as a benchmark for comparison, the second is the modified Boolean equation for full adder and third design is the design of full adder consisting of two XOR gate and a 2-to-1 Multiplexer. Besides Universal gates such as NOR gate and NAND gate, full adder circuits are used to further improve the speed of the circuit. The MM circuit is evaluated based on different parameters such as operating frequency, power dissipation and area of occupancy in FPGA board. The schematic designs of the arithmetic components along with the MM architecture are constructed using Quartus II tool, while the simulation is done using Model sim for verification of circuit functionality which has shown improvement on the full adder design with two XOR gate and one 2-to-1 Multiplexer implementation in terms of power dissipation, operating frequency and area.

Przejdź do artykułu

Abstrakt

The paper analyzes the prospects for the formation and implementation of digital data transmission technologies on railways of Kazakhstan, taking into account the potential for the development of high-speed railway transport (HSRWT), as well as new approaches for solving the development problems of advanced automated dispatch control systems (ADCS). It was shown that the solution of these problems is possible by automatization of the train traffic coordination based on the use of the potential of the GPRS data transmission technology. The work further developed models and algorithms used in ADCS of the railway transport. There has been carried out the formalization of the tasks of navigation data transmission for ADCS and for the subsystems of the railway rolling stock movement coordination, including HSRWT using GPRS data transmission technology. Also, the article describes a modernized algorithm for simulation of the GPRS channels operation in ADCS. The proposed algorithm differs from the existing ones by the ability to make predictive estimates for determination of the railway rolling stock location. Also, the developed algorithm provides opportunities for coordination of the trains movement, taking into account the optimization of the GPRS resources use.

Przejdź do artykułu

Abstrakt

Automation of data processing of contactless diagnostics (detection) of the technical condition of the majority of nodes and aggregates of railway transport (RWT) minimizes the damage from failures of these systems in operating modes. This becomes possible due to the rapid detection of serious defects at the stage of their origin. Basically, in practice, the control of the technical condition of the nodes and aggregates of the RWT is carried out during scheduled repairs. It is not always possible to identify incipient defects. Consequently, it is not always possible to warn personnel (machinists, repairmen, etc.) of significant damage to the RWT systems until their complete failure. The difficulties of obtaining diagnostic information is that there is interdependence between the main nodes of the RWT. This means that if physical damage occurs at any of the RWT nodes, in other nodes there can also occur malfunctions.

As the main way to improve the efficiency of state detection of the nodes and aggregates of RWT, we see the direction of giving the adaptability property for an automated data processing system from various contactless diagnostic information removal systems. The global purpose can be achieved, in particular, through the use of machine learning methods and failure recognition (recognition objects). In order to improve the operational reliability and service life of the main nodes and aggregates of RWT, there are proposed an appropriate model and algorithm of machine learning of the operator control system of nodes and aggregates. It is proposed to use the Shannon normalized entropy measure and the Kullback-Leibler distance information criterion as a criterion of the learning effectiveness of the automated detection system and operator node state control of RWT. The article describes the application of the proposed method on the example of an automatic detection system (ADS) of the state of a traction motor of an electric locomotive. There are given the test data of the model and algorithm in the MATLAB environment.

Przejdź do artykułu

Abstrakt

Network on chip (NoC) is presented as a promising solution to face off the growing up of the data exchange in the multiprocessor system-on-chip (MPSoC). However, the traditional NoC faces two main problems: the bandwidth and the energy consumption. To face off these problems, a new technology in MPSoC, namely, optical network-on-chip (ONoC) has been introduced which it uses the optical communication to guaranty a high performance in communication between cores. In addition, wavelength division multiplexing (WDM) is exploited in ONoC to reach a high rate of bandwidth. Nevertheless, the transparency nature of the ONoC components induce crosstalk noise to the optical signals, which it has a direct effect to the signal-to-noise ratio (SNR) then decrease the performance of the ONoC. In this paper, we proposed a new system to control these impairments in the network in order to detect and monitor crosstalk noise in WDM-based ONoC. Furthermore, the crosstalk monitoring system is a distributed hardware system designed and test with the different optical components according the various network topology used in ONoC. The register-transfer level (RTL) hardware design and implementation of this system can result in high reliability, scalability and efficiency with running time less than 20 ms.

Przejdź do artykułu

Abstrakt

Skin cancer is the most common form of cancer affecting humans. Melanoma is the most dangerous type of skin cancer; and early diagnosis is extremely vital in curing the disease. So far, the human knowledge in this field is very limited, thus, developing a mechanism capable of identifying the disease early on can save lives, reduce intervention and cut unnecessary costs. In this paper, the researchers developed a new learning technique to classify skin lesions, with the purpose of observing and identifying the presence of melanoma. This new technique is based on a convolutional neural network solution with multiple configurations; where the researchers employed an International Skin Imaging Collaboration (ISIC) dataset. Optimal results are achieved through a convolutional neural network composed of 14 layers. This proposed system can successfully and reliably predict the correct classification of dermoscopic lesions with 97.78% accuracy.

Przejdź do artykułu

Abstrakt

Speech enhancement objective is to improve the noisy speech signals for human perception. The intention of speech enhancement algorithm is to improve the performance of the communication, when the signal is occluded by noise. The quality and intelligibility of speech is reduced because of the presence of background noise. There are various adaptive filtering algorithms for speech enhancement. The existing least mean square and normalised least mean square algorithms have the problem of choosing the step size that guarantees the stability of the algorithm. To overcome this problem, we focus on speech enhancement by amended adaptive filtering. The proposed algorithm follows blind source separation strategy using adaptive filtering. Comparison of existing adaptive filtering algorithms with proposed algorithm justifies the amendment incorporated in this paper. Taking the objective criteria into account the algorithms has been tested for segmental signal to noise ratio (SegSNR), segmental mean square error (SegMSE), signal to noise ratio and mean square error. The proposed algorithm can be used for hand-free cell phone, hearing aids and teleconferencing systems.

Przejdź do artykułu

Abstrakt

Retinitis pigmentosa is a genetic disorder that results in nyctalopia and its progression leads to complete loss of vision. The analysis and the study of retinal images are necessary, so as to help ophthalmologist in early detection of the retinitis pigmentosa. In this paper fundus images and Optical Coherence Tomography images are comprehensively analyzed, so as to obtain the various morphological features that characterize the retinitis pigmentosa. Pigment deposits, important trait of RP is investigated. Degree of darkness and entropy are the features used for analysis of PD. The darkness and entropy of the PD is compared with the different regions of the fundus image which is used to detect the pigments in the retinal image. Also the performance of the proposed algorithm is evaluated by using various performance metrics. The performance metrics are calculated for all 120 images of RIPS dataset. The performance metrics such as sensitivity, sensibility, specificity, accuracy, F-score, equal error rate, conformity coefficient, Jaccard’s coefficient, dice coefficient, universal quality index were calculated as 0.72, 0.96, 0.97, 0.62, 0.12, 0.09, 0.59, 0.45 and 0.62, respectively.

Przejdź do artykułu

Abstrakt

Digital speech copyright protection and forgery identification are the prevalent issues in our advancing digital world. In speech forgery, voiced part of the speech signal is copied and pasted to a specific location which alters the meaning of the speech signal. Watermarking can be used to safe guard the copyrights of the owner. To detect copy-move forgeries a transform domain watermarking method is proposed. In the proposed method, watermarking is achieved through Discrete Cosine Transform (DCT) and Quantization Index Modulation (QIM) rule. Hash bits are also inserted in watermarked voice segments to detect Copy-Move Forgery (CMF) in speech signals. Proposed method is evaluated on two databases and achieved good imperceptibility. It exhibits robustness in detecting the watermark and forgeries against signal processing attacks such as resample, low-pass filtering, jittering, compression and cropping. The proposed work contributes for forensics analysis in speech signals. This proposed work also compared with the some of the state-of-art methods.

Przejdź do artykułu

Abstrakt

The MDCT and IntMDCT Algorithm is widely utilized is Audio coding. By lifting scheme or rounding operation IntegerMDCT is evolved from Modified Discrete Cosine Transform. This method acquire the properties of MDCT and contribute excelling invertiblity and good spectral mean .In this paper we discuss about the audio codec like AAC and FLAC using MDCT and Integer MDCT algorithm and to find which algorithm shows better Compression Ratio(CR).The confines of this task is to hybriding lossy and lossless audio codec with diminished bit rate but with finer sound quality. Certainly the quality of the audio is figure out by Subjective and Objective testing which is in terms of MOS (Mean opinion square), ABx and some of the hearing aid testing methodology like PEAQ(Perceptual Evaluation Audio Quality) and ODG(Objective Difference Grade)is followed. Execution measure, that is Compression Ratio(CR) and Sound Pressure Level (SPL) is approximated.

Przejdź do artykułu

Redakcja

Editor-in-Chief
Ryszard S. Romaniuk, Warsaw University of Technology, Institute of Electronic Systems, Poland

Managing Editor
Danuta Sobczak-Bartosiewicz, Warsaw University of Technology, Poland

Technical Editors
Grzegorz Borowik, Warsaw University of Technology, Institute of Telecommunications, Poland
Maciej Linczuk, Warsaw University of Technology, Institute of Electronic Systems, Poland

Secretary in-Charge
Danuta Ojrzenska-Wojter, Warsaw University of Technology, Institute of Telecommunications, Poland

Administrative Assistant
Danuta Sobczak-Bartosiewicz, Warsaw University of Technology, Poland

Technical Secretary
Michał Ramotowski, Warsaw University of Technology, Poland


Editorial Advisory Board
Prof. Victor-Valeriu Patriciu, Director Doctoral School of Electronics, Informatics and Communications for Defense and Security, Military Technical Academy Bucharest, Romania, Romania

Prof. Bart Scheers, Royal Military Academy, Belgium

Dr. Eli Winjum, Norwegian Defence Research Establishment, Norway

Wladyslaw Skarbek, Warsaw University of Technology, IRE, Poland

Christian Napoli, University of Catania, Italy

Rosario Giunta, University of Catania, Italy

Christopher Chiu, University of Technology Sydney, Australia

Prof. Emiliano Tramontana, University of Catania, Italy

Prof Robin Braun, University of Technology Sydney, Australia

Dr David Davis, University of Technology Sydney, Australia

dr Brian Culshaw, University of Strathclyde, UK, United Kingdom

Grzegorz Chmaj, University of Nevada, United States

Giuseppe Pappalardo, University of Catania, Italy

Michael Affenzeller, University of Applied Sciences Upper Austria

Prof. Stavros Hatzopoulos, Laboratory of Hearing Science Audiology Dept., University of Ferrara, Italy, Italy

Prof Nikita M Ryskin, Saratov State University, Russian Federation

Prof. Adam Wolisz, Technische Universität Berlin, Department of Electrical Engineering and Computer Science Telecommunication Networks

Prof. Edmundo Monteiro, Departamento de Engenharia Informatica Universidade de Coimbra Portugal, Portugal

Prof. Zoubir Mammeri, IRIT, Université Paul Sabatier 118 Route de Narbonne F-31062 Toulouse Cedex 9 FRANCE, France

Dr Paul D Polishuk, IGI, Boston, MA, USA

Giuseppe Macchiarella, Politecnico di Milano,Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Italy

Prof. Bernd Steinbach, Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut, Germany

Jan Szmidt, Warsaw University of Technology, Poland

Zenon Chaczko, University of Technology Sydney, Australia

Józef Modelski, Warsaw University of Technology, Poland

Wiesław Woliński, Warsaw University of Technology, Poland

Ryszard Klempous, Wroclaw University of Technology, Poland

Radomir Stanković, University of Niš, Serbia

Javier Poncela, University of Malaga, Spain

Marek Turowski, CFD Research Corporation, United States

Dawid Zydek, NV Energy, United States

Wojciech Szpankowski, Purdue University, United States

Jacek Żurada, University of Louisville, United States

Tadeusz Luba, Warsaw University of Technology, Poland

Stefan Hahn, Warsaw University of Technology, Poland

Gilbert De Mey, Ghent University, Belgium

Svetlana Yanushkevich, University of Calgary, Canada

Viktor Krozer, Technical University of Denmark, Denmark

Adam Morawiec, European Electronic Chips & Systems Design Initiative, France

Herman Rohling, Technical University of Hamburg, Germany

Franco Davoli, University of Genowa, Italy

Michał Mrozowski, Gdańsk University of Technology, Poland

Włodzimierz Janke, Koszalin University of Technology, Poland

Marek Amanowicz, Military University of Technology, Poland

Antoni Rogalski, Military University of Technology, Poland

Andrzej Materka, Technical University of Łódź, Poland

Henry Selvaraj, University of Nevada, United States

 

Kontakt

Principal Contact
Ryszard S. Romaniuk
Professor
Warsaw University of Technology, Institute of Electronic Systems, room 217, Nowowiejska 15/19, Warsaw 00-665, Poland
Phone: +48222345110
Fax: +48228252300
Email: rrom@ise.pw.edu.pl

Support Contact
Danuta Bartosiewicz
Email: D.Bartosiewicz@ise.pw.edu.pl

 

 

Instrukcje dla autorów

Author Guidelines

We recommend the use of LaTeX2e for the preparation of your camera-ready manuscript, together with the corresponding class file.

We do not encourage the use of Microsoft Word, particularly as the layout of the pages (the position of figures and paragraphs or fonts) can change between printouts. If you would like to prepare your manuscript using MS Word please contact Editorial Office.

Please carefully read the information below, and download the relevant files.

To do so, please download JETInfo.pdf

Microsoft Windows or Macintosh LaTeX2e style file:

      Please download IEEEtran.zip

Publication requirement is to prepare no less than 6 pages including references using provided LaTeX2e style. All papers that do not meet this requirement will be rejected before review stage.

 

 

Please submit the following:

  •     All source LaTeX files.
  •     Final PDF file (for reference).
  •     PS/EPS or TIFF files for all figures.
  •     Complete contact information for all authors.
  •     Mailing address, a VAT/CIF/NIF/NIP number (depending on the country) of affiliated company the invoice should be sent.

 

IMORTANT! Before staring submission please prepare a contact information for all co-authors (full names, e-mails and affiliations). A contact information for all authors should be provided during submission process in "Step 2. Entering the Submission's Metadata". Papers submitted without contact information for all co-, authors could be automatically rejected!

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji