Nauki Techniczne

Opto-Electronics Review


Opto-Electronics Review | 2016 | vol. 24 | No 2 |


In this study a metal clad waveguide sensor with a metamaterial guiding layer is analyzed. Sensitivity of the proposed sensor is derived using dispersion and Fresenal’s equations for waveguiding mode and reflection mode. While efficiently analyzing and comparing the results with the existing one, some interesting findings are achieved. It is observed that the proposed sensor shows larger cover layer sensitivity and larger adlayer sensitivity compared to the dielectric guiding layer sensor due to adsorbtive properties of metamaterial. Henceforth, it concludes that the proposed sensor shows sensitivity improvement over a dielectric guiding layer sensor.

Przejdź do artykułu

Autorzy i Afiliacje

A. Upadhyay
Y.K. Prajapati
R. Tripathi
V. Singh
J.P. Saini


The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.

Przejdź do artykułu

Autorzy i Afiliacje

L. Bychto
M. Maliński


Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100 m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10 GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80 Gbit/s optical data signal, respectively. The experimental results show that waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8 ps pulse width is also accurately measured by employing our developed optical sampling system.

Przejdź do artykułu

Autorzy i Afiliacje

Y. Liu
Y.G. Zhang
D. Tang


Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.

Przejdź do artykułu

Autorzy i Afiliacje

T. Stacewicz
Z. Bielecki
J. Wojtas
P. Magryta
J. Mikolajczyk
D. Szabra


The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Przejdź do artykułu

Autorzy i Afiliacje

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała


Opto-Electronics Review - Editorial Board

L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland

Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland

International Editorial Advisory Board

D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland

Language Editor

J. Kulesza, e-mail:

Technical Editors:

R.Podraza, e-mail:

E.Sadowska, e-mail:


Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

Instrukcje dla autorów

Polityka Open Access

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Dodatkowe informacje

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition



Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji