Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research


Polish Polar Research | 2004 | vol. 25 | No 3-4 |


A sequence of glacial deposits up to 4 m thick unconformably overlies the Eocene La Meseta Formation on the Seymour Island plateau (meseta) and forms a lithostratigraphically distinct unit in the succession of the James Ross Basin, which is formally named here as the Weddell Sea Formation. The formation is thus far known only from Seymour Island. This is a terrestrial melt-out till which contains abundant erratics and also reworked Cretaceous–Tertiary micro- and macrofossils within a silty clay matrix. The terrestrial origin of this till is shown by glacial striations at the base of the unit. The largest erratics (up to 3 m in diameter) are composed of plutonic (granitoids) and metamorphic (gneiss and crystalline schist) rocks of the Antarctic Peninsula provenance. Smaller in size and much more numerous are erratics of volcanic rocks, represented by andesite, basalt and corresponding pyroclastics of the James Ross Island Volcanic Group. Less common are erratics of sedimentary rocks, sometimes bearing fossils derived from the underlying Tertiary and Cretaceous strata. A few erratics from the top of the studied sequence are conglomerates of the Cockburn Island Formation with a foraminifer fauna. These are the youngest clasts within the Weddell Sea Formation. The presence of the Pliocene index fossil Ammoelphidiella antarctica Conato et Segre, 1974 indicates a lower age limit of latest Pliocene or earliest Pleistocene age. The upper age limit of the formation has not been established. An encrusting, unilamellar, colony of the bryozoan Escharella Gray, 1848 has been found on the one of erratics from the Weddell Sea Formation. This is the first fossil record of this genus in Antarctica.

Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Gaździcki
Andrzej Tatur
Urszula Hara
Rodolfo A. del Valle


Deep seismic sounding measurements were performed in the continent-ocean transition zone of north-western Spitsbergen , during the expedition ARKTIS XV/2 of the RV Polarstern and the Polish ship Eltanin in 1999. Profile AWI-99200 is 430 km long and runs from the Molloy Deep in the Northern Atlantic to Nordaustlandet in north-eastern Svalbard . Profile AWI-99400 is 360 km long and runs from the Hovgĺrd Ridge to Billefjorden. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations (REF) and ocean bottom seismometers (OBS) and hydrophone systems (OBH). Good quality refracted and reflected P waves were recorded along the two profiles providing an excellent data base for a detailed seismic modelling along the profile tracks. Clear seismic records from airgun shots were obtained up to distances of 200 km at land stations and 50 km at OBSs. TNT explosions were recorded even up to distances of 300 km . A minimum depth of about 6 km of the Moho discontinuity was found east of the Molloy Deep. Here, the upper mantle exhibits P-wave velocity of about 7.9 km/s, and the crustal thickness does not exceed 4 km . The continent–ocean transition zone to the east is characterised by a complex seismic structure. The zone is covered by deep sedimentary basins. The Moho interface dips down to 28 km beneath the continental part of the 99200 profile, and down to 32 km beneath the 99400 profile. The P-wave velocity below the Moho increases up to 8.15 km/s. The continental crust consists of two or three crystalline layers. There is a lowermost crustal continental layer, in the 99400 profile’s model, with the P-wave velocity in order of 7 km/s, which does not exist in the continental crust along the 99200 profile. Additionally, along the 99200 profile, we have found two reflectors in the lower lithosphere at depths of 14–42 and 40–50 km dipping eastward, with P-wave velocity contrasts of about 0.2 km/s. The characteristics of the region bears a shear-rift tectonic setting. The continent–ocean transition zone along the 99200 profile is mostly dominated by extension, so the last stage of the development of the margin can be classified as rifting. The uplifted Moho boundary close to the Molloy Deep can be interpreted as a south-western end of the Molloy Ridge. The margin in the 99400 profile area is of transform character.

Przejdź do artykułu

Autorzy i Afiliacje

Wojciech Czuba
Oliver Ritzmann
Yuichi Nishimura
Marek Grad
Rolf Mjelde
Aleksander Guterch
Wilfried Jokat


Ground temperature variations have been analysed to the depth of 160 cm, with respect to meteorological elements and short-wave radiation balance. The database of the ground temperature covers a thirteen month-long period (May 1992 – June 1993), which included both the seasons of complete freezing of the ground and thaw. Special attention has been given to the development of perennial permafrost and its spatial distribution. In summer, the depth of thawing ground varied in different types of ground — at the Polish Polar Station, this was ca. 130 cm. The ground froze completely in the first week of October. Its thawing started in June. The snow cover restrained heat penetration in the ground, which hindered the ground thawing process. Cross-correlation shows a significant influence of the radiation balance (K*) on the values of near-surface ground temperatures (r2 = 0.62 for summer).

Przejdź do artykułu

Autorzy i Afiliacje

Jan Leszkiewicz
Zbigniew Caputa


This publication begins series of papers on taxonomy of juvenile and little known Mesozoic gastropods from Siberia and Timan region (= Pechora Basin). First part contains general part with geological framework followed by the paleontological part on taxonomy of Vetigastropoda and Caenogastropoda (exclusive of Neogastropoda). Described are 15 species of gastropods. Three of them are new. They are Chuelskia siberica (Trochidae), Ageria gankinensis (Epitoniidae), and Dzikella chuzikovensis (superfamily and family uncertain). Moreover, described is a new genus Chuelskia (Trochidae). Eight species are left in the open nomenclature. The Siberian gastropods belong mostly to the cosmopolitan fauna while the gastropods of Timan region are the same as those already described from Novaja Zemlja Islands.

Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Kaim
Alexander L. Beisel
Nikolai I. Kurushin


The cephalopod diet of the gentoo penguin, Pygoscelis papua and the Antarctic fur seal, Arctocephalus gazella was comparatively analyzed at Laurie Island, South Orkney Islands. A total of 125 stomach samples were collected by the water off-loading method from gentoo penguins during the autumns of 1993, 1995 and 1996, and 39 fur seal scats were collected from mid March to April 1988. Cephalopods preyed upon by gentoo penguins were represented by 1974 beaks (1628 lower, 346 upper) which occurred in 50.4% of the samples. Lower beaks identified belonged exclusively to the squid Psychroteuthis glacialis. The mean lower rostral length (LRL) of these beaks was 1.1 mm (range 0.4– 1.8 mm). From the Antarctic fur seal scats 103 beaks (41 lower, 62 upper) were removed from 60.6% of scats which contained prey remains. The cephalopod species identified were Slosarczykovia circumantarctica and P. glacialis which constituted 78.8% and 21.1% in terms of numbers, respectively. The mean lower rostral length for S. circumantarctica was 2.7 mm (range 2.0–3.5 mm), while that of P. glacialis was 1.6 mm (range 1.0–2.5 mm). The foraging behaviour of the two top predators was analyzed and discussed according to the composition and size of their cephalopod prey.

Przejdź do artykułu

Autorzy i Afiliacje

Marcela M. Libertelli
Gustavo A. Daneri
Uwe Piatkowski
Nestor R. Coria
Alejandro R. Carlini


Zooplankton community composition, abundance and biomass from two polar localities – Kongsfjorden (Arctic) and Admiralty Bay (Antarctic) is compared. The community composition of zooplankton in both polar regions included similar taxonomic groups and the diversity at the species level was similar. Even though the overall species composition was different, some species were common for both ecosystems, for example Oithona similis, Microcalanus pygmaeus or Eukrohnia hamata. The abundance and biomass of the main zooplankton components (Copepoda) differed greatly between the two ecosystems, both being of an order of magnitude higher in Kongsfjorden than in Admiralty Bay. Kongsfjorden is situated at the border of two regions what induces high productivity with copepods playing an important role, and there is also a strong advection into the fjord. Admiralty Bay is adjacent to the homogenous Antarctic oceanic ecosystem; some advection into the bay occurs as an effect of tide and wind driven processes. Antarctic krill, which was not included in the present study, occupies most of the primary consumers niche and replaces copepods at the second trophic level.

Przejdź do artykułu

Autorzy i Afiliacje

Wojciech Walkusz
Sławomir Kwaśniewski
Katarzyna Dmoch
Haakon Hop
Maria Iwona Żmijewska
Luiza Bielecka
Stig Falk-Petersen
Jacek Siciński



Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland

Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland

Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland

Associate Editors

Piotr JADWISZCZAK (Białystok),


Krzysztof JAŻDŻEWSKI (Łódź),


Monika KĘDRA (Sopot)


Ewa ŁUPIKASZA (Sosnowiec)


Piotr PABIS (Łódź),


Editorial Advisory Board

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.



phone: (48 22) 697 88 53

Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Social Science and Hummanities
phone: (48 81) 537 68 99

Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej UMCS
Al. Kraśnicka 2D
20-718 Lublin, POLAND

Instrukcje dla autorów

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa.
Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffioyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).
WARD B.L. 1984. Distribution of modern benthic foraminifera of McMurdo Sound, Antarctica. M.Sc. Thesis. Victoria University, Wellington (unpublished).

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Polityka Open Access

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

Dodatkowe informacje

Abstracting & Indexing

Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji