Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study is to determine the characteristic features of personal functioning at different stages of professional development. The survey involved 139 professionals from various fields (74 women and 65 men) aged 24 to 67 years. The sample is divided into 5 groups according to the stage of professional development. A comparative analysis of groups by parameters of professional self-realisation, emotional burnout and psychological well-being is carried out. The results obtained demonstrate the nonlinear, complex dynamics of self-realisation of the individual throughout life and clarify the internal mechanisms of professional development at each stage. The stages of primary and secondary professionalisation are accompanied by the greatest need for self-improvement and at the same time, exaggerated and unrealistic ideas about one's own professional competence. An increased symptomatology of emotional burnout has been identified, which accompanies the peak of professional excellence and determines the next stage of professional activity decline after 30 years of work experience. The coincidence of the normative age and professional crises entails a profound crisis of the pre-retirement age, which is characterised primarily by a loss of goal-setting. People who continue to work in the post-retirement age have the highest rates of self-fulfillment, which leads to overall satisfaction with life and self. The described patterns open new perspectives for the development of ways of psychological counselling and organisational support of specialists.
Go to article

Bibliography

Bochelyuk, V. Y. (2010). Personal growth of staff. Theory and Practice of Modern Psychology, 1, 45–48. http://www.tpsp-journal.kpu.zp.ua/archive/1_2010/1_2010.pdf
Bochelyuk, V. Y., Bilousov, G. O., & Gorian, G. O. (2007). Professionalism of personality: Theoretical and methodological aspect. Zaporizhzhia: Humanities.
Bochelyuk, V. Y., Panov, M. S., Shostya, I. V., & Katasanov, O. M. (2016b). Socio-psychological aspects of self-understanding of the individual in professional communication. Theoretical and Applied Problems of Psychology, 3, 26–33. http://tpppjournal.com.ua/contents/n3y2k16folder/n3y2k16a3.html
Bochelyuk, V. Y., Zavatska, N. E., Kononenko, A. O., Novitska, L. V., & Fedorov, A. Y. (2016a). Socio-psychological features of self- realization of the individual in modern society. Severodonetsk: SNU named after V. Dal.
Chen, F.-P., & Oh, H. (2019). Staff views on member participation in a mental health clubhouse. Health and Social Care in the Community, 27(3), 788–796. https://doi.org/10.1111/hsc.12697
Cobos, T. L., & González, M. C. (2021). Professional competences of future teachers of secondary education: Case study of the formative evaluation promoted by e-rubrics in the specialty of physics and chemistry. Profesorado, 25(1), 197–221. https://revistaseug.ugr.es/index.php/profesorado/article/view/8374
Glavinska, O. D., Ovdiyenko, I. M., Brukhovetska, O. V., Chausova, T. V., & Didenko, M. S. (2020). Professional self-realization as a factor in the psychological well-being of specialists of caring professions. Journal of Intellectual Disability – Diagnosis and Treatment, 8, 548–559. https://doi.org/10.6000/2292-2598.2020.08.03.32
Hernández, I., & Mena, J. (2021). In-service teacher entitlement attitude: A case study from the Spanish context. Advances in Research on Teaching, 38, 149–161. https://eric.ed.gov/?id=ED615050
Hu, D. (2021). The practical confusions and countermeasures of the individualized teaching of university teachers. ACM International Conference Proceeding Series, 3, 663–667. https://doi.org/10.1145/3456887.3457036
Kokun, O. M. (2014). Questionnaire of professional self-realization. Practical Psychology and Social Work, 7, 35–39. https://lib.iitta.gov.ua/6069/1/Кокун_2014.pdf
Kokun, О. M. (2015). Professional self-fulfilment of skilled people of different professional groups and specialities. Social Welfare: Interdisciplinary Approach, 2(5), 19–32. https://lib.iitta.gov.ua/106675/1/Kokun_16_2.pdf
Kolosovich, A. (2021). Organizational (corporate) culture as a factor of official interaction in the military and professional environment. Social & Legal Studios, 3(13), 189-197. https://doi.org//2617-4162-2021-3-189-197
Korniyaka, O. M. (2015). Peculiarities of professional self-realization of a higher school teacher. Psycholinguistics, 17, 74–81. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe
Kovalchuk, Z. (2021). Personal reflection in constant conditions social change. Social & Legal Studios, 4(14), 177-183. https://doi.org/2617-4162-2021-4-177-183
Lavrentieva, O., Pererva, V., Krupskyi, O., Britchenko, I., & Shabanov, S. (2020). Issues of shaping the students' professional and terminological competence in science area of expertise in the sustainable development era. E3S Web Conferences, 166, article number 10031. https://doi.org/10.1051/e3sconf/202016610031
Márquez-Álvarez, L.-J., Calvo-Arenillas, J.-I., Jiménez-Arberas, E., Talavera-Valverde, M.-Á., Souto-Gómez, A.-I., & Moruno-Miralles, P. (2021). A Q-method approach to perceptions of professional reasoning in occupational therapy undergraduates. BMC Medical Education, 21(1), article number 264. https://doi.org/10.1186/s12909-021-02710-y
Mosso, C. O., & Ghio, R. (2020). Looking at the transformation of professional skills in relation to the technological development. Giornale Italiano Di Psicologia, 47(2), 653–663. https://iris.unito.it/handle/2318/1770452
Priyadi, M., Sarwa, & Basuki, N. (2021). Indonesian teacher’s competencies profile according to the SAMR model framework. Journal of Physics: Conference Series, 1842(1), article number 012083. https://doi.org/10.1088/1742-6596/1842/1/012083
Ryff scale of psychological well-being. (2007). https://psytests.org/ personal/wellbeingA.html
Test “Diagnosis of burnout”. (2008). https://healthreform.in.ua/burnout-test/
van Woerkom, M., & Meyers, M.C. (2019). Strengthening personal growth: The effects of a strengths intervention on personal growth initiative. Journal of Occupational and Organizational Psychology, 92(1), 98–121. https://doi.org/10.1111/joop.12240
Zeer, E. F. (2003). Crises of professional development of personality. Psychology of professions. Moscow: Akademicheskii Proekt.
Go to article

Authors and Affiliations

Vitalii Y. Bocheliuk
1
Liana V. Spytska
2
Iryna V. Shaposhnykova
3
Anastasiia V. Turubarova
4
Mykyta S. Panov
4

  1. Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine
  2. Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine
  3. Kherson State University, Kherson, Ukraine
  4. Khortytsia National Educational Rehabilitation Academy, Khortytsia, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The Bay of Cartagena (Colombia) is a site of commercial interest owing to its privileged location for maritime opera-tions; however, the discharge of wastewaters from industrial activities and domestic sewage are affecting the water quality, and consequently, the biodiversity of coastal ecosystems. The polycyclic aromatic hydrocarbons (PAHs) are found in sedi-ments and water of main ports, causing severe damage to the ecosystem. Thus, alternatives for the treatment of the Bay of Cartagena’s water and sediments are needed. In this paper, we performed the exergetic analysis of removing PAHs from water and sediments in the Bay of Cartagena using an adsorption-based treatment process with chitosan microbeads and magnetic nanoparticles (CM-TiO2/Fe3O4). The outcomes of exergy of utilities, irreversibilities and exergy losses were calculated us-ing process data and exergy of substances. The Aspen plus V10 software provided the physical exergies, while chemical exergies were gathered from the literature. Overall exergy efficiency of 0.3% was determined for the seawater and sediment treatment facility. A sensitivity analysis was performed to identify the impact and viability of different design alternatives.
Go to article

Bibliography

BOBBO S., FEDELE L., CURCIO M., BET A., DE CARLI M., EMMI G., POLETTO F., TARABOTTI A., MENDRINOS D., MEZZASALMA G., BERNARDI A. 2019. Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies. Vol. 12(18), 3538. DOI 10.3390/en12183538.
Caracol Radio 2019. Ordenan medidas para frenar contaminación en La Bahía de Cartagena [Measures are needed to stop pollution in the Bay of Cartagena] [online]. [Access 03/04/2020]. Available at: https://caracol.com.co/emisora/2019/09/02/cartagena/1567458652_644521.html.
El Tiempo 2018. La Bahía de Cartagena, un coctel tóxico [Cartagena Bay, a toxic cocktail] [online]. [Access 03.05.2020]. Available at: https://www.eltiempo.com/vida/medio-ambiente/la-bahia-de-cartagena-un-coctel-toxico-segun-estudio-298222
FLORES-CHAPARRO C.E., RODRIGUEZ-HERNANDEZ M.C., CHAZA¬RO-RUIZ L.F., ALFARO-DE LA TORRE M., HUERTA-DIAZ M.A, RANGEL-MENDEZ J.R. 2018. Chitosan-macroalgae biocompo¬sites as potential adsorbents of water- soluble hydrocarbons: Organic matter and ionic strength effects. Journal of Cleaner Production. Vol. 197 p. 633–642. DOI 10.1016/j.jclepro. 2018.06.200.
GARCÍA-PADILLA Á., MORENO-SADER K., REALPE A., ACEVEDO-MORANTES M., SOARES J.B.P. 2020. Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy. Vol. 17, 100292. DOI 10.1016/j.scp.2020.100292.
GU F., GENG J., LI M., CHANG J., CUI Y. 2019. Synthesis of chitosan-ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega. Vol. 4 No. 25 p. 21421–21430. DOI 10.1021/acsomega.9b03128.
HUANG Y., FULTON A.N., KELLER A.A. 2016. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment. Vol. 571 p. 1029–1036. DOI 10.1016/j.scitotenv.2016.07.093.
HUMEL S., SCHRITTER J, SUMETZBERGER-HASINGER M., OTTNER F., MAYER P., LOIBNER A.P. 2020. Atmospheric carbonation reduces bioaccessibility of PAHs in industrially contaminated soil. Journal of Hazardous Materials. Vol. 383, 121092. DOI 10.1016/j.jhazmat.2019.121092.
JOHNSON-RESTREPO B., OLIVERO-VERBEL J., LU S., GUETTE-FERNÁNDEZ J., BALDIRIS-AVILA R., O’BYRNE-HOYOS I., ALDOUS K.M., ADDINK R., KANNAN K. 2008. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environment International. Vol. 151 p. 452–459. DOI 10.1016/j.envpol.2007.04.011.
MARTINEZ D., PUERTA A., MESTRE R., PERALTA-RUIZ Y., GONZALEZ-DELGADO A. 2020. Exergy-based evaluation of crude palm oil production in North-Colombia. Australian Journal of Basic and Applied Sciences. Vol. 10(18) p. 82–88.
MERAMO-HURTADO S., ALARCÓN-SUESCA C., GONZÁLEZ-DEL¬GADO A.D. 2019a. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. Journal of Cleaner Production. Vol. I248, 119285. DOI 10.1016/j.jclepro.2019.119285.
MERAMO-HURTADO S., MORENO-SADER K., GONZÁLEZ-DELGADO Á.D. 2019b. Computer-aided simulation and exergy analysis of TiO2 nanoparticles production via green chemistry. PeerJ. Vol. 7, e8113 p. 1–19. DOI 10.7717/peerj.8113
MERAMO-HURTADO S.I., MORENO-SADER K.A., GONZALEZ-DELGADO A.D. 2020. Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. ACS Omega. Vol. 5. No. 21 p. 12126–12135. DOI 10.1021/acsomega.0c00394.
MERAMO-HURTADO S., PATINO-RUIZ D., COGOLLO-HERRERA K., HERRERA A., GONZALEZ-DELGADO A. 2018. Physico-chemical characterization of superficial water and sediments from Cartagena Bay. Contemporary Engineering Sciences. Vol. 11. No.32 p. 1571–1578. DOI 10.12988/ces.2018.8273.
MORENO-SADER K., MERAMO-HURTADO S.I., GONZÁLEZ-DELGADO A.D. 2019. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renewable and Sustainable Energy Reviews. Vol. 112 p. 42–57. DOI 10.1016/j.rser.2019.05.044.
OLIVA A.L., QUINTAS P.Y., RONDA A.C., MARCOVECCHIO J.E., ARIAS A.H. 2020. First evidence of polycyclic aromatic hydrocarbons in sediments from a marine protected area within Argentinean continental shelf. Marine Pollution Bulletin. Vol. 158, 111385. DOI 10.1016/j.marpolbul.2020.111385.
PITAKPOOLSIL W., HUNSOM M. 2014. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: Parameter optimization and process kinetics. Journal of Environmental Management. Vol. 133 p. 284–292. DOI 10.1016/j.jenvman.2013.12.019.
QIAO Y., LYU G., SONG CH., LIANG X., ZHANG H., DONG D. 2019. Optimization of programmed temperature vaporization injection for determination of polycyclic aromatic hydro¬carbons from diesel combustion process. Energies. 12(24), 4791. DOI 10.3390/en12244791.
RESTREPO J.D. 2018. Arrastrando La Montaña Hacia El Mar: Hacia dónde van nuestros océanos [Dragging the mountain to the sea: Where our oceans go]. Cartagena. Agenda del Mar Comunicaciones. ISBN 978-958-57860-8-0 pp. 96.
SAINI J., GARG V.K., GUPTA R.K. 2020. Green synthesized SiO2 @ OPW nanocomposites for enhanced lead (II) removal from water. Arabian Journal of Chemistry. Vol. 13. No. 1 p. 2496–2507. DOI 10.1016/j.arabjc.2018.06.003.
TOUS HERAZO G., MAYO MANCEBO G., RIVERO HERNÁNDEZ J., LLAMAS CONTERAS H. 2015. Evaluación temporal de los niveles de los hidrocarburos aromáticos policíclicos en los sedimentos de La Bahía de Cartagena [Temporal evaluation of the levels of polycyclic aromatic hydrocarbons in the sediments of Cartagena Bay]. Derrotero. Revista de la Ciencia y la Investigación. Vol. 9. No. 9 p. 7–12.

Go to article

Authors and Affiliations

Maileth Cantillo-Figueroa
1
ORCID: ORCID
Kariana A. Moreno-Sader
1
ORCID: ORCID
Angel D. Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Ave. del Consulado #Calle 30 No. 48 152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The current trend in the preparation of green sand mixtures emphasizes the acceleration of the mixing process while maintaining the quality of the mixture. This requirement results in the necessity of determining the optimal conditions for mixing the mixture with a given mixer. This work aims to determine the optimal mixing conditions for the newly introduced eddy mixer LM-3e from the company Multiserw-Morek in the sand laboratory at the Department of Metallurgical Technologies, Faculty of Materials and Technology, VŠB - Technical University of Ostrava. The main monitored properties of mixtures will be green compressive strength and moisture of the mixture. The measured properties of the mixture mixed on the eddy mixer will be compared with the properties of the mixture mixed on the existing LM-2e wheel mixer. The result of the experiment confirmed that the eddy mixer is suitable for the preparation of a mixture of the same quality as the wheel mixer but with a significantly reduced mixing time.
Go to article

Bibliography

[1] Pastierovičová, L., Kuchariková, L., Tillová, E., Chalupová, M. & Pastirčák, R. (2022). Quality of automotive sand casting with different wall thickness from progressive secondary alloy. Production Engineering Archives. 28(2), 172-177. https://doi.org/10.30657/pea.2022.28.20.
[2] Kamińska, J., Stachowicz, M., Puzio, S. et al. (2023). Studies of mechanical and technological parameters and evaluation of the role of lustrous carbon carriers in green moulding sands with hybrid bentonite. Archivives of Civil and Mechanical Engineering. 23, 11, 1-19. https://doi.org/10.1007/s43452-022-00550-1.
[3] Radkovský, F., Gawronová, M., Merta, V., Lichý, P., Kroupová, I., Nguyenová, I., Kielar, Š., Folta, M., Bradáč, J., Kocich, R. (2022). Effect of the composition of hybrid sands on the change in thermal expansion. Materials. 15(17), 6180, 1-15. https://doi.org/10.3390/ma15176180.
[4] Troy, E. C. et al. (1971). A mulling index applied to sand-water-bentonite. AFS Transactions. 79, 213-224.
[5] Gawronová, M., Kielar, Š. & Lichý, P. (2022). Mulling and its effect on the properties of sand-water-bentonite moulding mixture. Archives of Foundry Engineering. 22(3), 107-112. DOI: 10.24425/afe.2022.140243.
[6] Multiserw-Morek. Catalogue of moulding and core mass testing equipment. Propagation catalogue. Retrieved January 20, 2023, from http://multiserw-morek.pl/!data/attachments/odlewnictwo_pl_a4_24str.pdf. (in Polish).
[7] Silica sand Biała Góra. Sand Team. Technical sheet. Holubice. Retrieved January 20, 2023 from: https://www.sandteam.cz/wp-content/uploads/2022/09/Biala_Gora_v6.pdf (in Czech).
[8] Keramost. Activated bentonite. Product Safety data sheet. Retrieved January 20, 2023 from: https://www.keramost.cz/dokumenty/sds-bentonite-activated-en.pdf.

Go to article

Authors and Affiliations

Š. Kielar
1
M. Bašistová
1
ORCID: ORCID
P. Lichy
1
ORCID: ORCID

  1. VSB - Technical University of Ostrava Faculty of Materials Science and Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of electron beam alloying on the surface of a copper flat bar (M1Ez4) with titanium powder. Due to the quality of the surface after alloying and the obtained properties, the parameters used were given which met the assumed conditions to the greatest extent. The microstructure and mechanical properties as well as the chemical composition of surface-modified electron-beam copper show improved mechanical properties, i.e. hardness and abrasion resistance. This article uses research techniques using scanning electron microscopy and analysis of chemical composition in micro-areas (EDS). In order to examine the properties of the material after electron beam modification, hardness measurements were performed at low loads (HV0.1), abrasion resistance was tested, and conductivity was also measured. As a result of modifying the chemical and phase composition of M1E copper using an electron beam, the hardness increased by 46%, while the conductivity decreased by 16% due to the formation of intermetallic phases during solidification.
Go to article

Bibliography

[1] Węglowski, M.St., Błacha, S. & Phillips, A. (2016). Electron beam welding – Techniques and trends – Review. Vacuum. 130, 72-92. DOI: 10.1016/j.vacuum.2016.05.004.
[2] Yunlian, Q., Ju, D., Quan, H. & Liying, Z. (2000). Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Materials Science and Engineering: A. 280(1), 177-181. DOI: 10.1016/S0921-5093(99)00662-0.
[3] Guo, S., Zhou, Q., Kong, J., Peng, Y., Xiang, Y., Luo, T., Wang, K. & Zhu, J. (2016). Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding. Vacuum. 128, 205-212. DOI: 10.1016/j.vacuum.2016.03.034.
[4] Zhan, X., Yu, H., Feng, X., Pan, P. & Liu, Z. (2019). A comparative study on laser beam and electron beam welding of 5A06 aluminum alloy. Materials Research Express. 6(5), 056563. DOI: 10.1088/2053-1591/ab0562.
[5] Zhu, Q. et al., (2020). Research status and progress of welding technologies for molybdenum and molybdenum alloys. Metals. 10(2), 279, 1-16. DOI: 10.3390/met10020279.
[6] Pakieła, W. & Brytan, Z. (2020). Laser surface alloying of aluminum alloys with Cu/Fe metallic powders. Solid State Phenomena. 308, 64-75, DOI: 10.4028/www.scientific.net/SSP.308.64.
[7] Pakieła, W., Tański, T., Brytan, Z., Chladek, G. & Pakieła, K. (2020). The impact of laser surface treatment on the microstructure, wear resistance and hardness of the AlMg5 aluminum alloy. Applied Physics A. 126, 1-10. DOI: 10.1007/s00339-020-3350-x.
[8] Smolarczyk, P., Krupiński, M. & Pakieła, W. (2021). Microstructure and properties of the aluminum alloyed with ZrO powder using fiber laser. Solid State Phenomena. vol. 326, 157-165. DOI: 10.4028/www.scientific.net/ SSP.326.157.
[9] Janicki, D., Górka, J., Kwaśny, W., Pakieła, W. & Matus, K. (2020). Influence of solidification conditions on the microstructure of laser-surface-melted ductile cast iron. Materials. 13(5), 1174, 1-13. DOI: 10.3390/ma13051174.
[10] Krupiński, M., Krupińska, B. & Chulist, R. (2023). Influence of Re on the plastic hardening mechanism of alloyed copper. Materials. 16(16), 5519, 1-13. DOI: 10.3390/ma16165519.
[11] Krupińska, B., Rdzawski, Z., Krupiński, M. & Pakieła, W. (2020). Precipitation Strengthening of Cu–Ni–Si Alloy. Materials. 13(5), 1182, 1-12. DOI: 10.3390/ma13051182.
[12] Caron, R.N. (2001). Copper Alloys: Properties and Applications. In Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. & Veyssière, P. (Eds.), Encyclopedia of Materials: Science and Technology (pp. 1665-1668). Oxford: Elsevier.
[13] Patidar, D. & Rana, R.S. (2018). The effect of CO2 laser cutting parameter on Mechanical & Microstructural characteristics of high strength steel-a review. Materials Today: Proceedings. 5(9), Part 3, 17753-17762. DOI: 10.1016/j.matpr.2018.06.099.
[14] Kusinski, J., Kac, S., Kopia, A., Radziszewska, A., Rozmus-Górnikowska, M., Major, B., Major, L., Marczak, J. & Lisiecki, A. (2012). Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences: Technical Sciences. 60(4), 711-728. DOI: 10.2478/v10175-012-0083-9.
[15] Valkov, S., Ormanova, M. & Petrov, P.(2020). Electron-beam surface treatment of metals and alloys: techniques and trends. Metals. 10(9), 1219, 1-20. DOI: 10.3390/met10091219.
[16] Körner, C. (2016). Additive manufacturing of metallic components by selective electron beam melting — a review. International Materials Reviews. 61(5), 361-377. DOI: 10.1080/09506608.2016.1176289.
[17] Krupiński, M., Smolarczyk, P.E. & Bonek, M. (2020). Microstructure and properties of the copper alloyed with Ag and Ti powders using fiber laser. Materials. 13(11), 2430, 1-13. DOI: 10.3390/ma13112430.
[18] Božić, D., Stasic, J., Dimcic, B., Vilotijevic, M. & Rajkovic, V. (2011). Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites. Bulletin of Materials Science. 34, 217-226. DOI: 10.1007/s12034-011-0102-8.
[19] Ran, Q., Liu, J., Wang, X. & Liu, J. (2021). The Effect of Heat Treatment on the Microstructure Evolution and Properties of an Age-Hardened Cu-3Ti-2Mg Alloy. Archives of Metallurgy and Materials. 66(1), 163-170. DOI: 10.24425/amm.2021.134772. https://journals.pan.pl/dlibra/publication/134772/edition/117801
Go to article

Authors and Affiliations

P.E. Smolarczyk
1
ORCID: ORCID
M. Krupiński
1
ORCID: ORCID
M. Węglowski
2
ORCID: ORCID
Wojciech Pakieła
1
ORCID: ORCID
P. Śliwiński
2
ORCID: ORCID

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  2. Łukasiewicz Research Network – Upper Silesian Institute of Technology, Bł. Czesława 16-18, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more