Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 46
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Celem pracy było określenie wpływu hydraulicznego czasu zatrzymania (H RT) i wydajności cyrkulacji wewnętrznej (Gel na różnorodność mikroorganizmów w biomasie unieruchomionej w porowatym nośniku ceramicznym. Bioreaktor, wykorzystywany do usuwania związków organicznych ze ścieków komunalnych, był eksploatowany przy HRT 70 i 60 min oraz qc w zakresie 20-70 drn"h'. Różnorodność mikroorganizmów była określana na podstawie wzorów RISA przy użyciu indeksu Shannona-Wienera (1-1'). Przy HRT równym 70 min, H' obniżył się z 2,48 ± 0,14 do 2,13 ± 0,23 ze wzrostem Ge z 20 do 60 drn+h'. Przy HRT 60 min. zwiększenie qc z 40 do 70 drnvh' spowodowało spadek 1-1' z 2,41 ± O, 13 do 2,08 ± O, 19. Przy każdej wartości HRT, najwyższą efektywność usuwania związków organicznych uzyskano przy najniższej wartości qc i najwyższej bioróżnorodności.
Go to article

Authors and Affiliations

Magdalena Zielińska
Agnieszka Cydzik-Kwiatkowska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

The complexity of the phenomena associated with the course of the cognitive processes that determine an efficient learning, excludes the possibility of collecting knowledge in other ways than neuronal-information. It excludes also possibilities of interpreting it, in other ways than with use of respectively formalized cognitive models. The presented paper is a kind of summary of the latest achievements in this field.

Go to article

Authors and Affiliations

Jolanta Zielińska
Download PDF Download RIS Download Bibtex

Abstract

The research paper presents the results of the dynamic analysis of an existing bar dome subjected to wind loads. The calculation model of the structure was constructed using the finite element method. The dome was subjected to the standard wind pressure, assuming that it is operates in a harmonic manner. The numerical analyses were performed with the application of Autodesk Robot and MES3D. The analysis focused on the impact of selected factors such as the frequency of forcing, wind gustiness coefficient and structural damping on the behaviour of structures.

Go to article

Authors and Affiliations

W. Szaniec
K. Zielińska
Download PDF Download RIS Download Bibtex

Abstract

Two different porous ceramic carriers with immobilized activated sludge comprised a stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention times from 15 to 70 min and internal circulation capacity of 20, 40 and 60 drn':h'. Depending on hydraulic retention time, the sludge yield ranged from 0.138 to 0.066 g TSS·g COD·' in reactor I and from 0.175 to 0.107 g TSS·g COD·' in reactor li. An increase in volumetric loading rate and internal circulation capacity caused a reduction in sludge yield. A decrease in the sludge yield corresponded to an increase in the ratio of endogenous to substrate respiration by the immobilized biomass
Go to article

Authors and Affiliations

Magdalena Zielińska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of complex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms. The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and allows obtaining well-defined final topologies.
Go to article

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.
Go to article

Authors and Affiliations

Katarzyna Tajs-Zielińska
1
Bogdan Bochenek
1

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Celem artykułu jest pokazanie, w jaki sposób zastosowanie teorii dyskursu do problematyzowania rozumienia religii i sfery publicznej może skierować uwagę na nowe aspekty w badaniu publicznej roli religii. Artykuł składa się z trzech części. W pierwszej, krótko prezentuję dotychczasowe badania na temat publicznej obecności religii, ze szczególnym uwzględnieniem koncepcji teorii deprywatyzacji i religii publicznej José Casanovy. W drugiej części pokazuję, jak przyjęte przez Casanovę założenia dotyczące religii oraz sfery publicznej przekładają się na ograniczenia dla rozumienia i badania publicznej obecności religii. W odpowiedzi na te krytyczne głosy, w trzeciej części, wskazuję, w jaki sposób teoria dyskursu może być przydatna w radzeniu sobie z takimi ograniczeniami, a w rezultacie pozwolić na trafniejszą diagnozę oraz interpretację roli religii w sferze publicznej.

Go to article

Authors and Affiliations

Katarzyna Zielińska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Plant viruses create many changes in the morphology of the plant cell once the infection process has begun. This paper describes and compares the ultrastructural changes induced in maize cells by two isolates of Maize dwarfmosaic virus (MDMV), Spanish (MDMV-Sp) and Polish (MDMV-P), and one isolate of Sugarcane mosaic virus (SCMV) at 10 and 42 days post-inoculation: the concentration and arrangement of virus particles, inclusion bodies associated with infection, and other cytological alterations. The most important difference between maize cells infected with MDMV isolates and with SCMV-P1 was in the form of cytoplasmic cylindrical inclusions. In cells infected with MDMV only typical inclusions such as pinwheels and scrolls were observed, but laminar aggregates were also present in SCMV-infected cells. No virus particles were found in plant cell organelles. Specific virion arrangements occurred in cells infected with MDMV-Sp and SCMV. The most interesting new finding was of specific amorphous inclusions in the cytoplasm of MDMV-Sp-infected cells, which clearly differentiated the two MDMV isolates studied.

Go to article

Authors and Affiliations

Lidia Zielińska
Małgorzata Jeżewska
Katarzyna Trzmiel
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept of humanoid robot motion generation using the dedicated simplified dynamic model of the robot (Extended Cart-Table model). Humanoid robot gait with equal steps length is considered. Motion pattern is obtained here with use of Preview Control method. Motion trajectories are first obtained in simulations (off-line) and then they are verified on a test-bed. Tests performed using the real robot confirmed the correctness of the method. Robot completed a set of steps without losing its balance.

Go to article

Authors and Affiliations

Maksymilian Szumowski
Magdalena Sylwia Żórawska
Teresa Zielińska

This page uses 'cookies'. Learn more