Biosorption of Pb(II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics

Journal title

Archives of Environmental Protection








Liu, Lei : School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China ; Liu, Lei : Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China ; Xia, Mengya : School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China ; Hao, Jianwen : School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China ; Xu, Haoxi : School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China ; Song, Wencheng : Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China ; Song, Wencheng : Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China



Pb(II) ; biosorption ; Enterobacter sp. ; kinetics ; thermodynamics

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Abdi, O. & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, pp. 1386-1399.
  2. Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, pp. 235-250.
  3. Baruah, R., Kalita, D.J., Saikia, B.K., Gautam, A., Singh, A.K. & Deka Boruah, H.P. (2016). Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. International Biodeterioration & Biodegradation, 112, pp. 18-30. DOI: 10.1016/j.ibiod.2016.04.032
  4. Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equlibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161, pp. 62-67. DOI: 10.1016/j.jhazmat.2008.02.122
  5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection,43, pp. 3-9. DOI: 10.1515/aep-2017-0017
  6. Boyanov, M. I., Kelly, S. D., Kemner, K M., Bunker, B. A., Fein, J. B. & Fowle, D. (2003). Adsorption of cadium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica Cosmochimica Acta, 67, pp. 3299-3311. DOI: 10.1016/S0016-7037(02)01343-1
  7. Bulut, Y., Gozubenli, N. & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, pp. 300-306. DOI: 10.1016/j.jhazmat.2006.10.027
  8. Chen, C., Hu, J. & Wang, J. L. (2020). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213, pp. 106-158. DOI: 10.1016/j.jenvrad.2020.106158
  9. Chen, Z., Pan, X., Chen, H., Guan, X. & Lin, Z. (2016). Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301, pp. 531-537. DOI: 10.1016/j.jhazmat.2015.09.023
  10. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2005). Biosorption of Cr(III), Cd(II), and Cu(II) ions by blue-green algae Spiruline sp: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, pp. 75-84. DOI: 10.1016/j.chemosphere.2004.10.005
  11. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, pp. 147-153.
  12. Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S. & Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, pp. 305-316. DOI: 10.1016/j.hydromet.2003.10.003
  13. Çolak, F., Atar, N., Yazıcıoğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solutions by bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, pp. 422-428. DOI: 10.1016/j.cej.2011.07.084
  14. Fourest, E. & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology Biotechnology, 37, pp. 399-403.
  15. Gupta, V. K., Shrivastava, A. K. & Jain, N. (2001). Biosorption of chromium from aqueous solutions by green algae Spirogyra species. Water Research, 35, pp. 4079-4085. DOI: 10.1016/S0043-1354(01)00138-5
  16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, pp. 1569-1576. DOI: 10.1016/j.jhazmat.2006.04.045
  17. Holan, Z. R., Volesky, B. & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, 41, pp. 819-825.
  18. Kratochvil, D. & Volesky, B. (1998). Advance in the biosorption of heavy metals. Trends Biotechnolgy, 16, pp. 291-300. DOI: 10.1016/S0167-7799(98)01218-9
  19. Ku, Y. & Jung, I. L. (2001). Photocatalytic reduction of Cr(IV) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, pp. 135-142. DOI: 10.1016/S0043-1354(00)00098-1
  20. Lee, Y. C. & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, pp. 5297-5304. DOI: 10.1016/j.biortech.2010.12.103
  21. Li, D. D., Xu, X. J., Yu, H. W. & Han, X. R. (2017). Characterization of Pb(II) biosorption by psychrotrophic strain Pseudomonas sp. 13 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196, pp. 8-15. DOI: 10.1016/j.jenvman.2017.02.076
  22. Liu, L., Liu, J., Liu, X. T., Dai, C. W., Zhang, Z. X., Song, W. C. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, pp. 117-124. DOI: 10.1016/j.jenvrad.2019.03.008
  23. Liu, L., Chen, J. W., Liu, F., Song, W. C. & Sun, Y. B. (2021). Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 194, 110691. DOI: 10.1016/j.envres.2020.110691
  24. Liu, L., Zhang, Z. X., Song, W. C. & Chu, Y. N. (2018). Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. Journal of Radioanalytical and Nuclear Chemistry, 318, pp. 1151-1160. DOI: 10.1007/s10967-018-6209-2
  25. Lu, N. Q., Hu, T. J., Zhai, Y. B., Qin, H. Q., Aliyeva, J. & Zhang, H. (2020). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061. DOI: 10.1016/j.envres.2019.109061
  26. Lu, X., Zhou, X. J. & Wang, T. S. (2013). Mechanism of uranium(VI) uptake by saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. Journal of Hazardous Materials, 262, pp. 297-303. DOI: 10.1016/j.jhazmat.2013.08.051
  27. Ma, X. M., Cui, W. G., Yang, L., Yang, Y. Y., Chen, H. F. & Wang, K. (2015). Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresource Technology, 185, pp. 70-78. DOI: 10.1016/j.biortech.2015.02.074
  28. Naik, B. R., Suresh, C., Kumar, N. S. V., Seshaiah, K. & Reddy, A. V. R. (2017). Biosorption of Pb(II) and Ni(II) ions by chemically modified Eclipta alba stem powder: kinetics and equilibrium studies. Separation Science and Technology, 52, pp. 1717-1732. DOI: 10.1080/01496395.2017.1298614
  29. Naik, M. M. & Dubey, S. K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environment Safety, 98, pp. 1-7. DOI: 10.1016/j.ecoenv.2013.09.039
  30. Naseem, R. & Tahir, S. S. (2011). Removal of Pb(II) from aqueous-acidic solutions by using bentonite as an adsorbent. Water Researce, 35, pp. 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0
  31. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. Decanicus and Geobacillus thermoleovorans sub. Sp. Stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152, pp. 195-206. DOI: 10.1016/j.cej.2009.04.041
  32. Raize, O., Argaman, Y. & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, pp. 451-458. DOI: 10.1002/bit.20136
  33. Ramrakhiani, L., Ghosh, S. & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a Review. Applied Biochemistry and Biotechnology, 180, pp. 41-78. DOI: 10.1007/s12010-016-2083-y
  34. Ren, G., Jin, Y., Zhang, C., Gu, H. & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environment Safety, 117, pp. 141-148. DOI: 10.1016/j.ecoenv.2015.03.033
  35. Sag, Y. & Kutsal, T. (2000). Determination of activation energies of heavy metal ions on Zoogloe ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 35, pp. 145-151.
  36. Saha, G. C., Hoque, M., Miah, M., Holze, R., Chowdhury, D.A., Khandaker, S. & Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto taro (colocasiaesculenta(l.) schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, 5, 2151-2162. DOI:10.1016/j.jece.2017.04.013
  37. Sahin, Y. & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, pp. 1895-1901. DOI: 10.1016/j.procbio.2004.07.002
  38. Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A. & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, pp. 127-135. DOI: 10.1016/j.bej.2003.12.007
  39. Shroff, K. A. & Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, pp. 1234-1245. DOI: 10.1016/j.cej.2011.05.034
  40. Siripongvutikorn, S., Asksonthong, R. & Usawakesmanee, W. (2016). Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health & Disease, 6, pp. 195-205. DOI: 10.31989/ffhd.v6i4.240
  41. Song, W. C., Wang, X. X., Chen, Z. S., Sheng, G. D., Hayat, T., Wang, X. K. & Sun, Y. (2018). Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As (V): Batch and XAFS investigation. Environmental Pollution, 237, pp. 228-236. DOI: 10.1016/j.envpol.2018.02.060
  42. Song, W. C., Wang, X. X., Wen, T., Yu, S. J., Zou, Y. D. & Sun, Y. B. (2016). Immobilization of As(V) in Rhizopus oryzae investigated by batch and XAFS techniques. ACS Omega, 1, pp. 899-906. DOI: 10.1021/acsomega.6b00260
  43. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration Biodegradation, 93, pp. 145-152. DOI: 10.1016/j.ibiod.2014.03.022
  44. Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Bo, P. & Feng, H. (2017). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, pp. 160-169. DOI: 10.1016/j.cej.2017.11.048
  45. Tunali, S., Cabuk, A. & Akar, T. (2006). Removal of lead and copper ions from soil. Chemcal Engineering Journal, 115, pp. 203-211. DOI: 10.1016/j.cej.2005.09.023
  46. Uzun, Y. & Şahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Archives of Environmental Protection,43, pp. 37-43. DOI 10.1515/aep-2017-0015
  47. Wang, J. L. & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, pp. 427-451.
  48. Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L. & Yu, H. (2017). High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, pp. 58-66. DOI: 10.1016/j.biortech.2017.02.069
  49. Wang, T. S., Zheng, X. Y., Wang, X. Y., Lu, X. & Shen, Y. H. (2017). Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 167, pp. 92-99. DOI: 10.1016/j.jenvrad.2016.11.018
  50. Zheng, X. Y., Shen, Y. H., Wang, X. R., & Wang, T. S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, pp.109-116. DOI: 10.1016/j.chemosphere.2018.03.165






DOI: 10.24425/aep.2021.138461

Open Access Policy