Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 31
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Image sequences, in particular digital video sequences, are characterised by the features which result in their high potential as measurement data. However, as early as at the stage of visual assessment of digital film images, originating, in particular, from amateur cameras, occurrence of some deformations may be observed, which may highly influence the results of measurements performed using these images; such deformations differ from deformations occurred in the case of static photographic images. It results both, by the method of image recording, using an electronic shutter and interlaced or progressive scanning, as well as the method of file recording and compression. It is worth to notice the systematic nature of such deformations, which highly depend on mutual motions of a camera and recorded objects. The objective of presented research works was to develop the mathematical description of image deformations, as a function of motion parameters. This would allow for adaptation of the camera calibration process to the demands of sequential imaging, as well as for modification of algorithms of measurements using self-calibration, and, as a result, minimisation of deformations. Another objective was to analyse the influence of deformations, typical for digital film images, on the results of measurements performed using these images, by means of series of experiments, which were based on multiple calibration of static and a moving camera, also with the use of a spatial test field. The first part was made by developing formulas based on some geometric relations, using some simplifications. On the stage of experimental research a certain degree of compatibility of experimental results and theoretical assumptions were confirmed.
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Markowski

Abstrakt

Creotech Instruments is advancing a game-changing sCMOS camera series. The Final Prototype Model of an astronomical camera for Space Surveillance and Tracking (SST) is in the test campaign phase. Designed for SST, NEO, and debris detection, its adaptable platform suits quantum tech and biological microscopy. Edge computing sets it apart, leveraging FPGA-based SoC for real-time processing and Linux-based pre-processing. Operating autonomously, it supports on-camera ML algorithms, revolutionizing astronomy. Data pre-processing, like frame stacking, reduces data load. This paper introduces the camera's concept, architecture, and prototype test results, emphasizing specific use cases and future product line development.
Przejdź do artykułu

Autorzy i Afiliacje

Paweł Zienkiewicz
1
Katarzyna Karpińska
1
ORCID: ORCID
Mikołaj Jamroży
1
Bartłomiej Juszczyk
1
Dmytro Pochapskyi
1
Tomasz Przedpełski
1
Jerzy Łukasiewicz
2
Natalia Czortek
1
Grzegorz Brona
1

  1. Creotech Instruments S.A., Poland
  2. Air Force Institute of Technology (ITWL), Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Przejdź do artykułu

Bibliografia

  1. UViRCO Technologies. https://www.uvirco.com (2020)
  2. OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020)
  4. Olip Systems Inc. https://www.olipsystems.com (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020)
  6. ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020)
  26. NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020)
  27. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  29. Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Chrzanowski
1 2
ORCID: ORCID
Bolesław Safiej
2

  1. Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland

Abstrakt

The paper refers to earlier publications of the author, on identification of properties of thermomechanical, chemically hardened core/mold sands. In that earlier period, first version of the original DMA apparatus, produced by a Polish company Multiserw-Morek, was used. The Hot Distortion (HD) study results, published by the author in 2008, referred to phenomena accompanying a thermal shock in real conditions of thermal interaction of a liquid alloy on a mold, in reference to a shock possible to obtain in laboratory conditions, without use of liquid alloy as a heat source, with analysis of solutions applied in the DMA apparatus. This paper presents author’s observations on testing a new, innovative version of the LRu-DMA apparatus, containing a module allowing the Hot Distortion (HD) study. Temperature of specimens achieved in the case of the gas burner heating reaches values definitely above 800°C on the heated side and 610°C on the other side. Using an electric radiator, with maximal temperature of 900°C allows obtaining temperatures in between 225-300°C.
Przejdź do artykułu

Autorzy i Afiliacje

Z. Ignaszak
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper presents the results of a study on the use of infrared thermography to assess the quality of liquid metal, a basic semi-finished product used in foundry production. EN AC-46000 alloy with the designation AlSi9Cu3(Fe) was used for the study. The crystallization process of the alloy was investigated using the TDA method with a Crystaldigraph device and Optris PI thermal imaging camera. The research describes how to use a thermal imaging camera to assess the quality of aluminium alloys. These alloys, due to their propensity in the liquid state to oxidise and absorb hydrogen, a refining procedure in the melting process. The effects of alloy refining are evaluated during technological tests of hydrogen solubility, density and casting shrinkage. The results presented in this paper showed that there is a statistical correlation between the density of the metal and the temperature values from the thermogram of the sample, obtained during its solidification. The existing correlation makes it possible to develop a thermographic inspection algorithm that allows a fast and non-contact assessment of aluminium alloy quality.
Przejdź do artykułu

Bibliografia

[1] Dispinar, D., & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research, 17(5), 280-286. https://doi.org/10.1179/136404604225020696.
[2] Kowalczyk W., Dańko R., Górny M., Kawalec M. & Burbelko A. (2022) Influence of High-Pressure Die Casting Parameters on the Cooling Rate and the Structure of EN-AC 46000 Alloy. Materials, 15(16), 5702. https://doi.org/10.3390/ma15165702.
[3] Y B Zuo, B Jiang, Y J Zhang & Z Fan. (2013). Degassing LM25 aluminium alloy by novel degassing technology with intensive melt shearing. International Journal of Cast Metals Research. 26(1), 16-21. doi: 10.1179/1743133612Y.0000000019.
[4] Pietrowski, S. (2001). Al-Si Alloys. Lodz, Poland: Wydawnictwo Politechniki Łódzkiej. ISBN 83-7283-029-0
[5] Gumienny, G., Pisarek, B., Szymczak, T., Gawroński, J., Just, P., Władysiak, R., Rapiejko, C. & Pacyniak, T. (2022). Effect of degassing parameters on mechanical properties of EN AC-46000 gravity die casting. Materials. 15(23), 8323, 1-13. https://doi.org/10.3390/ma15238323.
[6] Pietrowski, S., Gumienny, G., Pisarek, B. & Władysiak, R. (2004). Production control of advanced casting alloys with TDA method. Archives of Mechanical Technology and Automation. 24(3), 131-143, ISSN (1233-9709).
[7] Rapiejko C., Pisarek B., Czekaj E. & Pacyniak T., (2014). Analysis of AM60 and AZ91 Alloy Crystallization in Ceramic Moulds by Thermal Derivative Analysis (TDA). Archives of Metallurgy and Materials. 59, doi: 10.2478/amm-2014-0246.
[8] Gumienny G., Kurowska B. & Just P. (2019). The effect of Manganese on the Crystallization Process, Microstructure and Selected Properties of Compacted Graphite Iron. Archives of Metallurgy and Materials. 64(4), 1269-1275. doi: 10.24425/amm.2019.130090.
[9] Pisarek B., Rapiejko C. & Pacyniak T. (2019). Effect of intensive Cooling of Alloy AC-AlSi7Mg with Alloy additions on Microstructure and Mechanical Properties. Archives of Metallurgy and Materials. 64 (2), 677-681. DOI: 10.2478/amm-2019.127598.
[10] Władysiak, R. & Kozuń, A. (2015). An Application for Infrared Camera in Analyzing of the Solidification Process of Al-Si Alloys. Archives of Foundry Engineering. 15(3), 81-84. DOI: 10.1515/afe-2015-0065.
[11] Holtzer, M., Bobrowski, A., Grabowska, B., Eichholz, S. & Hodor, K. (2010). Investigation of carriers of lustrous carbon at high temperatures by infrared spectroscopy (FTIR). Archives of Foundry Engineering. 10(4), 61-68.
[12] Sapieta, M., Dekys, V., Kao, M., Pastor, M., Sapietova, A. & Drvarova, B. (2023). Investigation of the mechanical properties of spur involute gearing by infrared thermography. Applied Sciences. 13(10), 5988. https://doi.org/10.3390/app13105988.
[13] Umar M. &·Paulraj S. (2021). Thermography analysis and porosity formation during laser beam welding of AA5083 H111 aluminum alloy. Journal of Thermal Analysis and Calorimetry 146, 1551–1559. https://doi.org/10.1007/s10973-020-10140-z.
[14] Lanc Z., Strbac B., Zeljkovic M., Zivkovic A. & Hadzistevic M. (2018). Emissivity of Aluminium Alloy Using Infrared Thermography Technique. Materials and Technology. 52(3). doi:10.17222/mit.2017.152.
[15] Badulescu C., Grediac M., Haddadi H., Mathias J.-D., Balandraud X. & Tran H.-S. (2011) Applying the Grid Method and Infrared Thermography to Investigate Plastic deformation in Aluminium Multicrystal. Mechanics of Materials, 43(1), 36-53. doi:10.1016/j.mechmat.2010.11.001.
Przejdź do artykułu

Autorzy i Afiliacje

Ryszard Władysiak
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland

Abstrakt

Artykuł dotyczy procesu kalibracji semi-metrycznych kamer cyfrowych. Stosując takie kamery do pomiaru małych obiektów, zdjęcia muszą być wykonane w bardzo dużej skali, w zakresie od około I :20 do I :50. W celu zapewnienia dokładności pomiaru fotogrametrycznego na poziomie poniżej pól milimetra, należy stosować specjalne procedury i testy kalibracyjne dla określenia parametrów orientacji wewnętrznej, łącznie ze współczynnikami opisującymi błędy systematyczne zdjęć. W niniejszym artykule, przedstawiono porównanie dwóch metod, bazujących na obrazach dwuwymiarowych i trójwymiarowych testów kalibracyjnych. Wykonany eksperyment jest częścią projektu badawczego, finansowanego przez KBN, który dotyczy numerycznego modelowania fragmentów rzeźb w celu rekonstrukcji oryginalnego kontekstu zabytku.
Przejdź do artykułu

Autorzy i Afiliacje

Aleksandra Bujakiewicz
Michał Kowalczyk
Piotr Podlasiak
Dorota Zawieska

Abstrakt

This paper presents a comprehensive metrological analysis of the Microsoft Kinect motion sensor performed using a proprietary flat marker. The designed marker was used to estimate its position in the external coordinate system associated with the sensor. The study includes calibration of the RGB and IR cameras, parameter identification and image registration. The metrological analysis is based on the data corrected for sensor optical distortions. From the metrological point of view, localization errors are related to the distance of an object from the sensor. Therefore, the rotation angles were determined and an accuracy assessment of the depth maps was performed. The analysis was carried out for the distances from the marker in the range of 0.8−1.65 m. The maximum average error was equal to 23 mm for the distance of 1.6 m.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Skalski
Bartosz Machura

Abstrakt

The article describes an application for calibration of a stereovision camera setup constructed for the needs of an electronic travel aid for the blind. The application can be used to calibrate any stereovision system consisting of two DirectShow compatible cameras using a reference checkerboard of known dimensions. A method for experimental verification of the correctness of the calibration is also presented. The developed software is intended for calibration of mobile stereovision systems that focus mainly on obstacle detection.

Przejdź do artykułu

Autorzy i Afiliacje

Dariusz Rzeszotarski
Paweł Pełczyński

Abstrakt

Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.
Przejdź do artykułu

Autorzy i Afiliacje

Tadeusz Kruczek

Abstrakt

The paper addresses the problem of the automatic distortion removal from images acquired with non-metric SLR camera equipped with prime lenses. From the photogrammetric point of view the following question arises: is the accuracy of distortion control data provided by the manufacturer for a certain lens model (not item) sufficient in order to achieve demanded accuracy? In order to obtain the reliable answer to the aforementioned problem the two kinds of tests were carried out for three lens models. Firstly the multi-variant camera calibration was conducted using the software providing full accuracy analysis. Secondly the accuracy analysis using check points took place. The check points were measured in the images resampled based on estimated distortion model or in distortion-free images simply acquired in the automatic distortion removal mode. The extensive conclusions regarding application of each calibration approach in practice are given. Finally the rules of applying automatic distortion removal in photogrammetric measurements are suggested
Przejdź do artykułu

Autorzy i Afiliacje

Jakub Kolecki
Antoni Rzonca

Abstrakt

The paper presents the results of research on the possibilities of fixing ship position coordinates based on results of surveying bearings on navigational marks with the use of the CCD camera. Accuracy of the determination of ship position coordinates, expressed in terms of the mean error, was assumed to be the basic criterion of this estimation. The first part of the paper describes the method of the determination of the resolution and the mean error of the angle measurement, taken with a camera, and also the method of the determination of the mean error of position coordinates when two or more bearings were measured. There have been defined three software applications assigned for the development of navigational sea charts with accuracy areas mapped on. The second part contains the results of studying accuracy in fixing ship position coordinates, carried out in the Gulf of Gdansk, with the use of bearings taken obtained with the Rolleiflex and Sony cameras. The results are presented in a form of diagrams of the mean error of angle measurement, also in the form of navigational charts with accuracy fields mapped on. In the final part, basing on results obtained, the applicability of CCD cameras in automation of coastal navigation performance process is discussed.
Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Naus
Mariusz Wąż

Abstrakt

The paper presents results of the localization of main noise sources in the industrial plant. Identification of main noise sources was made with an acoustic camera using Beamforming Method. Parallel to the measurements by means of the acoustic camera, sound level measurements on the main noise sources have been performed. Based on the calculations, prediction regarding the noise emission at residential buildings located near to the plant has been determined. Acoustic noise maps have been performed with LEQ Professional software, which includes the 3D geometry of the buildings inside the plant. It has been established that, after introduction of noise reduction measures in the plant, the noise levels at the observation points in the residential area meets the limit values.

Przejdź do artykułu

Autorzy i Afiliacje

Wiesław Fiebig
Damian Dąbrowski

Abstrakt

The paper presents an experimental stand for testing the front car camera S-CAM with embedded image recognition systems. The camera sends CAN messages these are converted to USART messages by microprocessor based system. The messages are interpreted by MATLAB script on the basis of database of traffic signs in accordance with Polish Road Code. The testing stand is mainly aimed for educating students interested in the fields of electronics and technologies related to automotive branch, as well. The second objective is a research on efficiency of traffic sign recognition system being one of functionalities of S-CAM camera. The technical specification of testing stand, its functionality and limitations were also discussed. The bench operation was illustrated with examples of stiff images, animation and real movies.
Przejdź do artykułu

Autorzy i Afiliacje

Sławomir Gryś
1

  1. Częstochowa University of Technology, Faculty of Electrical Engineering, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Solar-blind ultraviolet cameras with image intensifier with CMOS detector typically use various count methodologies to measure the optical energy of an electrical corona. However, these count methodologies are non-radiometric without considering parameters such as distance, focus-, zoom-, and gain setting of a camera. An algorithm which considers the calibration and radiometric measurement of optical energy for the slow frame rate intensifier type cameras is presented. Furthermore, it is shown how these calibration data together with the flowcharts are used for the conversion from raw measured data to radiometric energy values.
Przejdź do artykułu

Bibliografia

  1. Gubanski, S., Dernfalk, A., Andersson, J. & Hillborg, H. Diagnostic methods for outdoor polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 14, 1065–1080 (2007). https://doi.org/10.1109/TDEI.2007.4339466
  2. Lindner, M., Elstein, S., Lindner, P., Topaz, J. M. & Phillips, A. J. Daylight corona discharge imager. in 1999 11th International Symposium on High Voltage Engineering 349–352 (London, 1999). https://doi.org/10.1049/cp:19990864
  3. Bass, M. et al. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. (McGraw-Hill, Inc., 2009).
  4. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in 5th Conference on Sensors, MEMS, and Electro-Optic Systems 1104317 (Skukuza, South Africa, 2019). https://doi.org/10.1117/12.2501251
  5. Maistry, N., Schutz, R. A. & Cox, E. The quantification of corona discharges on high voltage electrical equipment in the uv spectrum using a corona camera. in 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika) 1–4 (Pisen, Czech Republic, 2018). https://doi.org/10.1109/DIAGNOSTIKA.2018.8526024
  6. Dai, R., Lu, F. & Wang, S. Relation of composite insulator surface discharge ultraviolet signal with electrical pulse signal. in 2011 International Conference on Electrical and Control Engineering 282–285 (Wuhan, China, 2011). https://doi.org/10.1109/ICECENG.2011.6056830
  7. Wang, S., Lv, F. & Liu, Y. Estimation of discharge magnitude of composite insulator surface corona discharge based on ultraviolet imaging method. IEEE Trans. Dielectr. Electr. Insul. 21, 1697–1704 (2014). https://doi.org/10.1109/TDEI.2014.004358
  8. Suhling, K., Airey, R. W. & Morgan, B. L. Optimisation of centroiding algorithms for photon event counting imaging. Nucl. Instrum. Methods Phys. Res. B 437, 393–418 (1999).  https://doi.org/10.1016/S0168-9002(99)00770-6
  9. Boksenberg, A., Coleman, C., Fordham, J. & Shortridge, K. Interpolative centroiding in CCD-based image photon counting systems. Adv. Electron. Electron. Phys. 64, 33–47 (1986). https://doi.org/10.1016/S0065-2539(08)61601-7
  10. Fordham, J., Moorhead, C. & Galbraith, R. Dynamic-range limitations of intensified CCD photon-counting detectors. Mon. Notices Royal Astron. Soc. 312, 83–88 (2000). https://doi.org/10.1046/j.1365-8711.2000.03155.x
  11. Coetzer, C. J. & Leuschner, F. W. The influence of a camera's spectral transfer function used for observing high voltage corona on insulators. IEEE Trans. Dielectr. Electr. Insul. 23, 1753–1759 (2016). https://doi.org/10.1109/TDEI.2016.005021
  12. Hamamatsu Photonics, K. K. Photomultiplier tubes: Basics and applications. Edition 3a. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v3aE.pdf (2007).
  13. Coetzer, C., Becker, T., West, N. & Leuschner, W. Investigating an alternate detector for solar-blind ultraviolet cameras for high-voltage inspection. in 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA) 1–6 (2021). https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377216
  14. IS/IEC 60270:2000 Indian Standard, High Voltage Test Techniques-Partial Discharge Measurements. (International Electrotechnical Commission, 2000).
  15. Tang, J., Luo, X. & Pan, C. Relationship between PD magnitude distribution and pulse burst for positive coronas. IET Sci. Meas. Technol. 12, 970–976 (2018). https://doi.org/10.1049/iet-smt.2018.5039
  16. Willers, C. J. Electro-Optical System Analysis and Design: A Radiometry Perspective. (Society of Photo-Optical Instrumentation Engineers, 2013). https://doi.org/10.1117/3.1001964
  17. Wyatt, C. Radiometric Calibration: Theory and Methods, (Elsevier, 2012).
  18. Coetzer, C., Groenewald, S. & Leuschner, W. An analysis of the method for determining the lowest sensitivity of solarblind ultravio-let corona cameras. in 2020 International SAUPEC/RobMech/ PRASA Conference 1–6 (Cape Town, South Africa, 2020).    https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040997
  19. Montgomery, D. C. & Runger, G. C. Applied Statistics and Probability for Engineers. (John Wiley and Sons, 2014).
  20. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in 2020 International SAUPEC/RobMech/PRASA Conference 1–5 (IEEE, Cape Town, South Africa, 2020). https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041014
  21. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras' sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
Przejdź do artykułu

Autorzy i Afiliacje

Casper J. Coetzer
1
ORCID: ORCID
Nicholas West
2
ORCID: ORCID

  1. Dept. of Electrical, Electronic and Computer Engineering, University of Pretoria, Hatfield 0028, South Africa
  2. Dept. of Electrical and Information, University of Witwatersrand, 1 Jan Smuts Ave., Braamfontein 2000, Johannesburg, South Africa

Abstrakt

This paper presents a critical analysis of a current typical method to measure sensitivity of solar blind ultraviolet cameras using a high temperature blackbody as a calibrated source of ultraviolet light. It has been shown that measurement of sensitivity of solar-blind ultraviolet (SBUV) cameras defined as minimal detectable blackbody irradiance at optics plane of the tested SBUV camera generates inflated, misleading and prone to measurement errors' results that should not be used for evaluation of SBUV cameras' performance.

Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Chrzanowski
ORCID: ORCID
W. Chrzanowski

Abstrakt

Thermal image drift is observed in prevalent industrial-level cameras because their optomechanical design is not optimised to reduce this phenomenon. In this paper, the effect of temperature on industrial-level cameras is investigated, focusing on the thermal image drift resulting from ambient temperature changes and warming-up process. Standard methods for reducing thermal image drift are reviewed, concentrating on the lack of repeatability aspect of this drift. Repeatable thermal image drift is crucial for applying a compensation model as random thermal deformations in sensors cannot be compensated. Moreover, the possible cause of this issue is explored, and novel optomechanical camera modifications are proposed that maintain the thermal degrees of freedom for the deforming sensor, limiting the lack of repeatability aspect of thermal image drift to a low level. The improvement is verified by conducting experiments using a specialised test stand equipped with an invar frame and thermal chamber. Considering the results from the application of the polynomial compensation model, the standard deviation of the central shifts of image drift is reduced by ×3.99, and the absolute range of image drift is reduced by ×2.53.
Przejdź do artykułu

Autorzy i Afiliacje

Marcin Adamczyk
1
ORCID: ORCID
Kohei Nimura
1

  1. Warsaw University of Technology, Faculty of Mechatronics, Institute of Micromechanics and Photonics, ul. Andrzeja Boboli 8,02-525 Warsaw, Poland

Abstrakt

An optical measurement method of radial displacement of a ring sample during its expansion with velocity of the order 172 m/s and estimation technique of plastic flow stress of a ring material on basis of the obtained experimental data are presented in the work. To measure the ring motion during the expansion process, the Phantom v12 digital high-speed camera was applied, whereas the specialized TEMA Automotive software was used to analyze the obtained movies. Application of the above-mentioned tools and the developed measuring procedure of the ring motion recording allowed to obtain reliable experimental data and calculation results of plastic flow stress of a copper ring with satisfactory accuracy.

Przejdź do artykułu

Autorzy i Afiliacje

Jacek Janiszewski

Abstrakt

This paper presents the implementation of a thermal camera for the quantitative estimation of power losses in a high frequency planar transformer (100 kHz/ 5600 VA). The methodology is based on the observation of the transient temperature rise and determination of the power losses by means of curves representing the derivative of temperature as a function of power losses dissipated in the transformer. First, the thermal calibration characteristics had to be obtained from a simple experiment, where power losses are generated by DC current in the ferrite core and windings. Next, experimental investigations focused on the determination of the transformer power losses for a short circuit and no load, with a resistive load and with the rectifier as a load were carried out. Finally, to verify the obtained results, analytical calculations based on Dowell’s and modified Steinmetz’s equations were additionally made, which showed a good convergence. The proposed method is easy to implement and can be used as an alternative to the calorimetric method which is time-consuming and requires a complicated measurement setup.

Przejdź do artykułu

Autorzy i Afiliacje

Roman Barlik
Mieczysław Nowak
Piotr Grzejszczak
Mariusz Zdanowski

Abstrakt

The paper presents a proposition of the theoretical-experimental method of determination of power losses in the transversely vibrating rubber V-belt of continuously variable transmission. The article comprises the results of experimental tests conducted on a special test stand with a complete scooter drivetrain powered by a small two-stroke internal combustion engine. Such a configuration allows ensuring real CVT working conditions. A high-speed camera was used for the contactless measurement of belt vibrations and time-lapse image analysis was performed in dedicated software. An axially moving Euler–Bernoulli beam was assumed as the mathematical model. Longitudinal vibrations and nonlinear effects were omitted. Additionally, it was assumed that the belt material behaves according to the Kelvin–Voigt rheological model. Analysis of the damped free vibrations of the cantilever beam, made of the belt segment, allowed to determine the equivalent bending damping coefficient. The CVT power losses, due to bending in the rubber transmission belt, were obtained for the fixed working conditions after numerical calculations. The proposed methodology is a new approach in this research area, which allows to obtain results impossible to achieve with other measurement methods.
Przejdź do artykułu

Autorzy i Afiliacje

Waldemar Łatas
1
ORCID: ORCID
Adam Kot
2
ORCID: ORCID

  1. Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Poland
  2. Department of Automotive Vehicles, Faculty of Mechanical Engineering, Cracow University of Technology, Poland

Abstrakt

Shape memory polymers (SMP) are new multifunctional materials raising increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behavior as well as characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25_C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behavior of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP.
Przejdź do artykułu

Autorzy i Afiliacje

Maria Staszczak
1
ORCID: ORCID
Arkadiusz Gradys
2
ORCID: ORCID
Karol Golasiński
1
ORCID: ORCID
Elżbieta A. Pieczyska
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawi´nskiego 5B, 02-106 Warsaw, Poland
  2. Multidisciplinary Research Center, Cardinal Stefan Wyszy´ nski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Bridge inspections are a vital part of bridge maintenance and the main information source for Bridge Management Systems is used in decision-making regarding repairs. Without a doubt, both can benefit from the implementation of the Building Information Modelling philosophy. To fully harness the BIM potential in this area, we have to develop tools that will provide inspection accurate information easily and fast. In this paper, we present an example of how such a tool can utilise tablets coupled with the latest generation RGB-D cameras for data acquisition; how these data can be processed to extract the defect surface area and create a 3D representation, and finally embed this information into the BIM model. Additionally, the study of depth sensor accuracy is presented along with surface area accuracy tests and an exemplary inspection of a bridge pillar column.
Przejdź do artykułu

Bibliografia

  1.  J.S. Kong and D.M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges”, J. Struct. Eng. 129(6), 818–828 (2003).
  2.  B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability”, J. Bridg. Eng. 9(4), 403–413 (2004).
  3.  A. Costin, A. Adibfar, H. Hu, and S.S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations”, Autom. Constr. 94, 257–281 (2018).
  4.  “SeeBridge”. [Online]. Available: https://seebridge.net.technion.ac.il/.
  5.  R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition”, Autom. Constr. 90, 134–145 (2018).
  6.  P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models”, J. Comput. Civ. Eng. 32(3), (2018).
  7.  P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces”, Adv. Eng. Informatics 37, 150–162 (2018).
  8.  P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects”, Autom. Constr. 105, 102824 (2019).
  9.  R. Lu, I. Brilakis and C. R. Middleton, “Detection of Structural Components in Point Clouds of Existing RC Bridges”, Comput. Civ. Infrastruct. Eng. 34(3), 191–212 (2019).
  10.  R. Lu and I. Brilakis, “Digital twinning of existing reinforced concrete bridges from labelled point clusters”, Autom. Constr. 105, 102837 (2019).
  11.  D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFC-based semantic enrichment and visualization”, Autom. Constr. 112, 103088 (2020).
  12.  C.S. Shim, H. Kang, N.S. Dang, and D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Struct. Syst. 20(6), 697–708 (2017).
  13.  N.S. Dang and C.S. Shim, “BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges”, IOP Conf. Ser. Earth Environ. Sci. 143(1), 012032 (2018).
  14.  S. Dang, H. Kang, S. Lon, and S. Changsu, “3D Digital Twin Models for Bridge Maintenance”, 10th Int. Conf. Short Mediu. Span Bridg., 2018, pp. 73.1‒73.9.
  15.  C.S. Shim, N.S. Dang, S. Lon, and C.H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model”, Struct. Infrastruct. Eng. 15(10), 1319–1332 (2019).
  16.  Z. Ma and S. Liu, “A review of 3D reconstruction techniques in civil engineering and their applications”, Adv. Eng. Informatics 37, 163–174 (2018).
  17.  Q. Wang and M.K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”, Adv. Eng. Informatics 39, 306–319 (2019).
  18.  C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D reconstruction of existing concrete bridges using optical methods”, Struct. Infrastruct. Eng. 15(7), 912–924 (2019).
  19.  S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, in Proceedings of the 24th annual ACM symposium on User interface software and technology – UIST ’11, 2011, p. 559.
  20.  J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Polish Acad. Sci. Tech. Sci. 63(1), 87–96 (2015).
  21.  J. Bień, T. Kamiński, and M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Arch. Civ. Mech. Eng. 19(4), 1353–1367 (2019).
  22.  J. Bień, M. Kużawa, and T. Kamiński, “Strategies and tools for the monitoring of concrete bridges”, Struct. Concr. 21(4), 1227–1239 (2020).
  23.  “OpenCV AI Kit”. [Online]. Available: https://www.kickstarter.com/projects/opencv/opencv-ai-kit.
  24.  B. Liu, H. Cai, Z. Ju, and H. Liu, “RGB-D sensing based human action and interaction analysis: A survey”, Pattern Recognit. 94, 1–12 (2019).
  25.  Y.-D. Hong, Y.-J. Kim, and K.-B. Lee, “Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data”, Sensors 20(16), 4448 (2020).
  26.  M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, and B. Becerik-Gerber, “Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor”, J. Comput. Civ. Eng. 27(6), 743–754 (2013).
  27.  D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, and P. Arias, “Low-cost aerial unit for outdoor inspection of building façades”, Autom. Constr. 36, 128–135 (2013).
  28.  C. Bellés and F. Pla, “A Kinect-Based System for 3D Reconstruction of Sewer Manholes”, Comput. Civ. Infrastruct. Eng. 30(11), 906–917 (Nov. 2015).
  29.  M. Abdelbarr, Y.L. Chen, M.R. Jahanshahi, S.F. Masri, W.M. Shen, and U.A. Qidwai, “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor”, Smart Mater. Struct. 26(12) (2017).
  30.  Z. Xu, S. Li, H. Li, and Q. Li, “Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning”, Automation in Construction 96(February), 40–54 (2018).
  31.  M. Nahangi, T. Czerniawski, C.T. Haas, and S. Walbridge, “Pipe radius estimation using Kinect range cameras”, Autom. Constr. 99 (March 2017), 197–205 (2019).
  32.  G.H. Beckman, D. Polyzois, and Y.J. Cha, “Deep learning-based automatic volumetric damage quantification using depth camera”, Automation in Construction 99(November 2018), 114–124 (2019).
  33.  H. Kim, S. Lee, E. Ahn, M. Shin, and S.-H. Sim, “Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion”, Struct. Heal. Monit., 1–13 (2020).
  34.  Intel, “Intel® RealSenseTM Camera D400 series Product Family Datasheet” (2019).
  35.  C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction using iterated graph cuts”, in ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04, 2004, p. 309.
  36.  Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping”, ACM SIGGRAPH 2004 Pap. SIGGRAPH 2004, 303–308 (2004).
  37.  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Int. J. Comput. Vis. 1(4), 321–331 (Jan. 1988).
  38.  M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM 24(6), 381–395 (1981).
  39.  D. Holz and S. Behnke, “Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing”, 2013, 61–73.
  40.  M. Garland and P.S. Heckbert, “Surface simplification using quadric error metrics”, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’97, 1997, 209–216.
  41.  Intel, “Intel® RealSenseTM Camera: Depth testing methodology”, 2018.
  42.  B. Wójcik and M. Żarski, “Asesment of state-of-the-art methods for bridge inspection: case study”, Arch. Civ. Eng. 66(4), 343‒362 (2020).
  43.  K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN”, IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2017).
Przejdź do artykułu

Autorzy i Afiliacje

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID

  1. Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland

Abstrakt

Extremely intensive development of technology has resulted in many innovations. There are new methods of acquiring spatial data, such as laser scanning, unmanned aerial vehicles or digital non-metric cameras, which are the subject of this study. Integration of this data has become a new tool that has expanded existing measurement capabilities, finding applications in 3D modelling, archaeology and monument conservation. Owing to scanning, we can get the coordinates of almost every point of the scanned surface, obtaining full and detailed information about the object dimensions. The level of technical advancement of digital cameras allows them to be successfully used in short-range photogrammetry [27], and recently also in low-altitude aerial photogrammetry (unmanned aerial vehicles). Two different test objects were selected to achieve the intended purpose. The monument located on the 14-meter-high top of the Wanda Mound was adopted as the first object. It consists of a simple rectangular plinth made of brown marble. On its top there is a figure of an eagle with a crown of white marble. On the west wall of the plinth there is an inscription “Wanda” and a drawing showing a sword crossed with a distaff. The following features supported the choice of the monument: interesting shape of the object, which includes both simple geometric forms with large and flat surfaces (plinth), and more detailed surfaces (figure of an eagle); detailed texture of the object (complicated marble veins, wing details). The second object under study was The Helena Modrzejewska National Stary Theatre. The building was rebuilt in the style of Viennese Art Nouveau, so that it fully incorporates into the rest of buildings. Measurements included data obtained from a non-metric camera, Leica ScanStation scanner and DJI S 1000 multi-rotor.
Przejdź do artykułu

Autorzy i Afiliacje

Izabela Piech
1
ORCID: ORCID
Tomasz Adam
2
Paulina Dudas
2

  1. Krakow University of Agriculture, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
  2. Graduate of the University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al.Mickiewicza 24/28, 30-059 Krakow, Poland

Abstrakt

Range-gated-imaging system, which can be used to eliminate backscatter in strong scattering environments, is based on two high speed technologies. It uses high power, ultra-short pulse laser as the light source. And it opens the optical gate of an ICCD camera with a micro-channel-plate image intensifier in a very short time while the laser pulses reflected by the object is coming back to the ICCD camera. Using this range-gated-imaging technology, the effect of scattered light can be reduced and a clear image is obtained.

In this paper, the test results of the range-gated-imaging system under dense aerosol environments, which simulates environments in the reactor containment building when the severe accident of the nuclear power plant occurred, are described. To evaluate the observation performance of the range-gated-imaging system under such dense fog environment, we made a test facility. Fog particles are sprayed into the test facility until fog concentration is reached to the postulated concentration level of the severe accident of the nuclear power plant. At such dense fog concentration conditions, we compared and evaluated the observation performances of the range-gated-imaging system and the CCD camera.

Przejdź do artykułu

Autorzy i Afiliacje

J.W. Cho
Y.S. Choi
K.M. Jeong

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji