Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper questions of optimization of growth conditions in the method of molecular beam epitaxy for creation of high-efficient quantum dot infrared photodetectors are considered. As a model material system for theoretical investigations, heterostructures with germanium-silicon quantum dots on the silicon surface are chosen. For calculations of the dependencies of quantum dots array parameters on synthesis conditions the kinetic model of growth of differently shaped quantum dots based on the general nucleation theory is proposed. The theory is improved by taking into account the change in free energy of nucleation of an island due to the formation of additional edges of islands and due to the dependence of surface energies of facets of quantum dots on the thickness of a 2D wetting layer during the Stranski–Krastanow growth. Calculations of noise and signal characteristics of infrared photodetectors based on heterostructures with quantum dots of germanium on silicon are done. Dark current in such structures caused by thermal emission and barrier tunneling of carriers, as well as detectivity of the photodetector in the approximation of limitation by generation-recombination noises are estimated. Moreover, the presence of dispersion of quantum dots by size is taken into account in the calculations of the generation-recombination noises. Results of calculations of the properties of structures with quantum dots and their dependencies on growth parameters, as well as the characteristics of quantum dot photodetectors are presented. Comparison of the estimated parameters of quantum dots ensembles and the characteristics of quantum dot photodetectors with experimental data is carried out.

Go to article

Authors and Affiliations

I.I. Izhnin
O.I. Fitsych
A.V. Voitsekhovskii
A.P. Kokhanenko
K.A. Lozovoy
V.V. Dirko
Download PDF Download RIS Download Bibtex

Abstract

A theoretical analysis of the mid-wavelength infrared range detectors based on the HgCdTe materials for high operating temperatures is presented. Numerical calculations were compared with the experimental data for HgCdTe heterostructures grown by the MOCVD on the GaAs substrates. Theoretical modelling was performed by the commercial platform SimuAPSYS (Crosslight). SimuAPSYS fully supports numerical simulations and helps understand the mechanisms occurring in the detector structures. Theoretical estimates were compared with the dark current density experimental data at the selected characteristic temperatures: 230 K and 300 K. The proper agreement between theoretical and experimental data was reached by changing Auger-1 and Auger-7 recombination rates and Shockley-Read-Hall carrier lifetime. The level of the match was confirmed by a theoretical evaluation of the current responsivity and zero-bias dynamic resistance area product (R0A) of the tested detectors.
Go to article

Bibliography

  1. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  2. Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/r01
  3. Hansen, G. L., Schmit, J. L. & Casselman, T. N. Energy gap versus alloy composition and temperature in Hg1-xCdx J. Appl. Phys. 53, 7099–7101 (1982). https://doi.org/10.1063/1.330018
  4. Harman, T. C. & Strauss, J. Band structure of HgSe and HgSe-HgTe alloys. Appl. Phys. 32, 2265–2270 (1961). https://doi.org/10.1063/1.1777057
  5. Martyniuk, P. & Rogalski, A. Performance comparison of barrier detectors and HgCdTe photodiodes. Eng. 53, 106105 (2014). https://doi.org/10.1117/1.OE.53.10.106105
  6. Rogalski, A. Infrared and Terahertz Detectors. (3rd) (CRC Press Taylor & Francis Group, 2020). https://doi.org/10.1201/b21951
  7. Lei, W., Antoszewski, J. & Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and Detectors. Phys. Rev. 2, 041303 (2015). https://doi.org/10.1063/1.4936577
  8. Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 10, 159–174 (2002). https://optor.wat.edu.pl/10(3)159.pdf
  9. Qiu, W. C., Jiang, T. & Cheng, X. A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. Appl. Phys. 118, 124504 (2015). https://doi.org/10.1063/1.4931661
  10. Iakovleva, N. I. The study of dark currents in HgCdTe hetero-structure photodiodes. Commun. Technol. Electron. 66, 368–374 (2021). https://doi.org/10.1134/S1064226921030220
  11. Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. Opto-Electron. Rev. 21, 240–258 (2013). https://doi.org/10.2478/s11772-013-0090-x
  12. Piotrowski, J. & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
  13. Elliott, C. T. Non-equilibrium mode of operation of narrow-gap semiconductor devices. Sci. Technol. 5, S30–S37 (1990). https://doi.org/10.1088/0268-1242/5/3S/008
  14. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  15. Kopytko, M., Kębłowski , A., Gawron, W. & Pusz, LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond. Sci. Technol. 31, 035025 (2016). https://doi.org/10.1088/0268-1242/31/3/035025
  16. He, J. et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Express 28, 33556 (2020). https://doi.org/10.1364/OE.408526
  17. Gawron, W. et al. MOCVD Grown HgCdTe heterostructures for medium wave infrared detectors. Coatings 11, 611 (2021). https://doi.org/10.3390/coatings11050611
  18. Kębłowski, A. et al. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors. SPIE. 9819, 98191E-1 (2016). https://doi.org/10.1117/12.2229077
  19. APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
  20. Capper, P. P. Properties of Narrow Gap Cadmium-Based Compounds. (INSPEC, the Institution of Electrical Engineers, 1994).
  21. Long, F. et al. The structural dependence of the effective mass and Luttinger parameters in semiconductor quantum wells. Appl. Phys. 82, 3414–3421 (1997). https://doi.org/10.1063/1.365657
  22. Lopes, V. C., Syllaios, A. J. & Chen, M. C. Minority carrier lifetime in mercury cadmium telluride. Sci. Technol. 8, 824–841 (1993). https://doi.org/10.1088/0268-1242/8/6s/005
  23. Aleshkin, V.Y. et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Appl. Phys. 129, 133106 (2021). https://doi.org/10.1063/5.0046983
  24. Reine, M. B. et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. Electron. 36, 1059–1067 (2007). https://doi.org/10.1007/s11664-007-0172-y
  25. Schuster, J. et al. Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression. Phys. Lett. 107, 023502 (2015). https://doi.org/10.1063/1.4926603
  26. Schacham, S. E. & Finkman, E. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. Appl. Phys. 57, 2001–2009 (1985). https://doi.org/10.1063/1.334386
  27. Zhu, L. et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 28, 3802709 (2022). https://doi.org/10.1109/JSTQE.2021.3121273
  28. Kopytko, M., Jóźwikowski, K., Martyniuk, P. & Rogalski, A. Photon recycling effect in small poxel p-i-n HgCdTe long wavelenght infrared photodiodes. Infrared Phys. Technol. 97, 38–42 (2019). https://doi.org/10.1016/j.infrared.2018.12.015
  29. Olson, B. V. et al. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Phys. Lett. 107, 261104 (2015). https://doi.org/10.1063/1.4939147
  30. Beattie, A. R. & Landsberg, P. Auger effect in semiconductors. Proc. Math. Phys. Eng. Sci. A249, 16−29 1959. https://doi.org/10.1098/rspa.1959.0003
  31. Krishnaumurthy, S. & Casselman, T. N. A detailed calculation of the Auger lifetime in p-type HgCdTe. Electron. Mater. 29, 828−831 (2000). https://doi.org/10.1007/s11664-000-0232-z
Go to article

Authors and Affiliations

Tetiana Manyk
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Waldemar Gawron
1 2
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. VIGO System S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a low power highly sensitive Triple Metal Surrounding Gate (TM-SG) Nanowire MOSFET photosensor is proposed which uses triple metal gates for controlling short channel effects and III–V compound as the channel material for effective photonic absorption. Most of the conventional FET based photosensors that are available use threshold voltage as the parameter for sensitivity comparison but in this proposed sensor on being exposed to light there is a substantial increase in conductance of the GaAs channel underneath and, thereby change in the subthreshold current under exposure is used as a sensitivity parameter (i.e., Iillumination/IDark). In order to further enhance the device performance it is coated with a shell of AlxGa1-xAs which effectively passivates the GaAs surface and provides a better carrier confinement at the interface results in an increased photoabsorption. At last performance parameters of TM-SG Bare GaAs Nanowire MOSFET are compared with TM-SG core-shell GaAs/AlGaAs Nanowire MOSFET and the results show that Core-Shell structures can be a better choice for photodetection in visible region.

Go to article

Authors and Affiliations

S.K. Sharma
A. Jain
B. Raj
Download PDF Download RIS Download Bibtex

Abstract

Dual-band infrared detector, which acquires more image information than single-band detectors, has excellent detection, recognition, and identification capabilities. The dual-band detector can have two bumps to connect with each absorber layer, but it is difficult to implement small pitch focal plane arrays and its fabrication process is complicated. Therefore, the most effective way for a dual-band detector is to acquire each band by bias-selectable with one bump. To aim this, a dual-band MWIR/LWIR detector based on an InAs/GaSb type-II superlattice nBn structure was designed and its performance was evaluated in this work. Since two absorber layers were separated by the barrier layer, each band can be detected by bias-selectable with one bump. The fabricated dual-band device exhibited the dark current and spectral response characteristics of MWIR and LWIR bands under negative and positive bias, respectively. Spectral crosstalk that is a major issue in dual-band detectors was also improved. Finally, a 20 μm pitch 640 × 512 dual-band detector was fabricated, and both MWIR and LWIR images exhibited an average noise equivalent temperature difference of 30 mK or less at 80 K.
Go to article

Authors and Affiliations

Hyun-Jin Lee
1
ORCID: ORCID
Jun Ho Eom
1
Hyun Chul Jung
1
Ko-Ku Kang
1
Seong Min Ryu
1
Ahreum Jang
1
Jong Gi Kim
1
Young Ho Kim
1
Han Jung
1
Sun Ho Kim
2
Jong Hwa Choi
2

  1.  i3system, Inc., 26-32, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
  2. Agency of Defense Development, 34186 P.O.Box 35, Yuseong-gu, Daejeon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The hyperspectral thermal imaging instrument for technology demonstration funded by NASA’s Earth Science Technology Office under the In-Space Validation of Earth Science Technologies program requires focal plane array with reasonably good performance at a low cost. The instrument is designed to fit in a 6U CubeSat platform for a low-Earth orbit. It will collect data on hydrological parameters and Earth surface temperature for agricultural remote sensing. The long wavelength infrared type-II strain layer superlattices barrier infrared detector focal plane array is chosen for this mission. With the driving requirement dictated by the power consumption of the cryocooler and signal-noise-ratio, cut-off wavelengths and dark current are utilized to model instrument operating temperature. Many focal plane arrays are fabricated and characterised, and the best performing focal plane array that fulfils the requirements is selected. The spectral band, dark current and 8–9.4 m pass band quantum efficiency of the candidate focal plane array are: 8–10.7 m, 2.1∙10−5 A/cm2, and 47%, respectively. The corresponding noise equivalent difference temperature and operability are 30 mK and 99.7%, respectively. Anti-reflective coating is deposited on the focal plane array surface to enhance the quantum efficiency and to reduce the interference pattern due to an absorption layer parallel surfaces cladding material.
Go to article

Authors and Affiliations

Sir B. Rafol
1
Sarath D. Gunapala
1
David Z. Ting 
1
Alexander Soibel
1
Arezou Khoshakhlagh
1
Sam A. Keo
1
Brian J. Pepper 
1
Cory J. Hill
1
Yuki Maruyama
1
Anita M. Fisher 
1
Ashok Sood
2
John Zeller 
2
Robert Wright
3
Paul Lucey
3
Miguel Nunes
3
Luke Flynn
3
Sachidananda Babu
4
Parminder Ghuman
4

  1. Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  2. Magnolia Optical Technologies, Inc, Albany New York 12203, USA
  3. Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
  4. NASA Earth Science Technology Office Greenbelt, Maryland, USA

This page uses 'cookies'. Learn more