Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The axial-radial flux type permanent magnet synchronous machine (ARFTPMSM) can adjust the main magnetic field by controlling the axial flux, so it can overcome the problem that the flux of the permanent magnet synchronous motor (PMSM) is difficult to adjust. Due to the existence of the axial device in the ARFTPMSM, the finite element method (FEM) is used to establish a three-dimensional model for analysis. By analyzing the magnetic density distribution of the rotor, it is found that there is a serious magnetic leakage phenomenon at both ends of the tangential permanent magnet. The rotor material at the end of the tangent permanent magnet is replaced by non-ferromagnetic material to reduce the magnetic leakage. On this basis, the influence of the width of the non-ferromagnetic material on the performance of the motor is compared. By Fourier decomposition of the back-EMF waveform, the total harmonic distortion (THD) rate of the back-EMF under different axial magnetomotive force (MMF) was calculated. Finally, the eddy current distribution and the eddy current loss of the rotor are analyzed, and the variation law of the eddy current loss is summarized. The conclusion can provide reference for the optimal design of the ARFTPMSM.
Go to article

Bibliography

[1] Zhao X., Niu S., Ching T.W., Design and Analysis of a New Brushless Electrically Excited Claw-Pole Generator for Hybrid Electric Vehicle, in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1–5 (2018).
[2] Sathyan Sabin et al., Influence of Magnetic Forces and Magnetostriction on the Vibration Behavior of an Induction Motor, pp. 825–834 (2019).
[3] Hongbo Qiu, Yong Zhang et al., Performance Analysis and Comparison of PMSM with Concentrated Winding and Distributed Winding [J], Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020).
[4] Kommuri S.K., Defoort M., Karimi H.R., Veluvolu K.C., A Robust Observer-Based Sensor Fault- Tolerant Control for PMSM in Electric Vehicles, in IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7671–7681 (2016).
[5] Liu X., Chen H., Zhao J., Belahcen A., Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles, in IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3533–3545 (2016).
[6] Tong W. et al., Feasibility Analysis of 100 kA DC Commutation Scheme to be Applied in the Quench Protection Unit of CFETR, in IEEE Transactions on Applied Superconductivity, vol. 30, no. 1, pp. 1–9 (2020).
[7] Yıldırız E., Onbilgin G., Comparative study of new axial field permanent magnet hybrid excitation machines, in IET Electric Power Applications, vol. 11, no. 7, pp. 1347–1355 (2017).
[8] Weili L., Hongbo Q., Ran Y., Xiaochen Z., Liyi L., Three-Dimensional Electromagnetic Field Calculation and Analysis of Axial–Radial Flux-Type High-Temperature Superconducting Synchronous Motor, IEEE Trans. Appl. Supercond., vol. 23, no. 1, article sequence number 5200607 (2013).
[9] Zhang Z., Liu Y., Tian B., Wang W., Investigation and Implementation of a New Hybrid Excitation Synchronous Machine Drive System, IET Electric Power Application, vol. 11, no. 4, pp. 487–494 (2017).
[10] Kim K., A Novel Magnetic Flux Weakening Method of Permanent Magnet Synchronous Motor for Electric Vehicles, in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4042–4045 (2012).
[11] Kim D.Y., Jang G.H., Nam J.K., Magnetically Induced Vibrations in an IPM Motor Due to Distorted Magnetic Forces Arising From Flux Weakening Control, in IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3929–3932 (2013), DOI: 10.1109/TMAG.2013.2238614.
[12] Hua W., Cheng M., Zhang G., A Novel Hybrid Excitation Flux-Switching Motor for Hybrid Vehicles, in IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4728–4731 (2009).
[13] Wang D., Zhang D., Xue D., Peng C.,Wang X., A New Hybrid Excitation Permanent Magnet Machine with an Independent AC Excitation Port, in IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 5872–5882 (2019).
[14] Lee J. et al., A Study on Analysis of Synchronous Reluctance Motor Considering Axial Flux Leakage Through End Plate, in IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1–4, article sequence number 8201704 (2019).
[15] Ye X., Zheng S., Zhang Y., He Z., Modeling and Optimization of IRTMB for High-Speed Motor Considering Magnetic Flux Leakage Effect, 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1–5 (2019).
[16] Qiu H., Yu W., Tang B., Mu Y., Li W., Yang C., Study on the Influence of Different Rotor Structures on the Axial-Radial Flux Type Synchronous Machine, in IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5406–5413 (2018), DOI: 10.1109/TIE.2017.2784339.
[17] Hu W., Zhang X., Lei Y., Du Q., Shi L., Liu G., Analytical Model of Air-Gap Field in Hybrid Excitation and Interior Permanent Magnet Machine for Electric Logistics Vehicles, in IEEE Access, vol. 8, pp. 148237–148249 (2020), DOI: 10.1109/ACCESS.2020.3015601.
[18] Ma S., Zhang Z., Investigation of field regulation characteristic of a hybrid excitation synchronous machine with axial auxiliary air-gaps, 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, pp. 1–6 (2012).
[19] Jiang X., Xu D., Gu L., Li Q., Xu B., Li Y., Short-Circuit Fault-Tolerant Operation of Dual-Winding Permanent-Magnet Motor Under the Four-Quadrant Condition, in IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 6789–6798 (2019), DOI: 10.1109/TIE.2018.2878131.
[20] Hongbo Q., Ran Y.,Weili L., Nan J., Influence of rectifiers on high speed permanent magnet generator electromagnetic and temperature fields in distributed power generation systems, IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 655–662 (2015), DOI: 10.1109/TEC.2014.2366194.
[21] Weili L., Hongbo Q., Ran Y., Xiaochen Z., Liyi L., Three-Dimensional Electromagnetic Field Calculation and Analysis of Axial–Radial Flux-Type High-Temperature Superconducting Synchronous Motor, in IEEE Transactions on Applied Superconductivity, vol. 23, no. 1, article sequence number 5200607 (2013), DOI: 10.1109/TASC.2012.2232923.
Go to article

Authors and Affiliations

Hongbo Qiu
1
Shubo Zhang
1

  1. Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

Casting is the most economical way of producing parts for many industries ranging from automotive, aerospace to construction towards small appliances in many shares. One of the challenges is the achievement of defect-free cast parts. There are many ways to do this which starts with calculation and design of proper runner system with correct size and number of feeders. The first rule suggests starting with clean melt. Yet, rejected parts can still be found. Although depending on the requirement from the parts, some defects can be tolerated, but in critical applications, it is crucial that no defect should exist that would deteriorate the performance of the part. Several methods exist on the foundry floor to detect these defects. Functional safety criteria, for example, are a must for today's automotive industry. These are not compromised under any circumstances. In this study, based on the D-FMEA (Design Failure Mode and Effect Analysis) study of a functional safety criterion against fuel leakage, one 1.4308 cast steel function block, which brazed-on fuel rail port in fuel injection unit, was investigated. Porosity, buckling, inclusion and detection for leak were carried out by non-destructive test (NDT) methods. It was found that the best practice was the CT-Scan (Computed Tomography) for such applications.
Go to article

Bibliography

[1] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18(3), 129-143.
[2] Kweon, E.S., Roh, D.H., Kim, S.B. & Stefanescu, D.M. (2020). Computational modeling of shrinkage porosity formation in spheroidal graphite iron: a proof of concept and experimental validation. International Journal of Metalcasting. 14, 601-609.
[3] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[4] Duckers, (2015). AISI Materials Content Analysis: Final Report.
[5] Meola, C., Squillace, A., Minutolo, F.M.C. & Morace, R.E. (2004). Analysis of stainless steel welded joints: a comparison between destructive and non-destructive techniques. Journal of Materials Processing Technology. 155, 1893-1899.
[6] Menzies I. & Koshy, P. (2009). In-process detection of surface porosity in machined castings. International Journal of Machine Tools and Manufacture. 49(6), 530-535.
[7] Ushakov, V.M., Davydov, D.M. & Domozhirov, L.I. (2011). Detection and measurement of surface cracks by the ultrasonic method for evaluating fatigue failure of metals. Russian Journal of Nondestructive Testing. 47(9), 631-641.
[8] Vazdirvanidis, A., Pantazopoulos, G. & Louvaris, A. (2009). Failure analysis of a hardened and tempered structural steel (42CrMo4) bar for automotive applications. Engineering Failure Analysis. 16(4), 1033-1038.
[9] Gupta, R.K., Ramkumar, P. & Ghosh, B.R. (2006). Investigation of internal cracks in aluminium alloy AA7075 forging. Engineering Failure Analysis. 13(1), 1-8.
[10] Smokvina Hanza S. & Dabo, D. (2017). Characterization of cast iron using ultrasonic testing, HDKBR INFO Mag. 7(1), 3-7.
[11] Krautkrämer, J. & Krautkrämer, H. (1990). Ultrasonic Testing of Materials” Springer-Verlag.
[12] Ziółkowski, G., Chlebus, E., Szymczyk, P. & Kurzac, J. (2014). Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Archives of Civil and Mechanical Engineering. 14(4), 608-614.
[13] A. du Plessis, A., le Roux, S.G. & Guelpa, A. (2016). Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Studies in Nondestructive Testing and Evaluation. 6(A), 17-25.
[14] Kurz, J.H., Jüngert, A., Dugan, S., Dobmann, G. & Boller, C. (2013). Reliability considerations of NDT by probability of detection (POD) determination using ultrasound phased array. Engineering Failure Analysis. 35, 609-617.
[15] Sika, R., Rogalewicz, M., Kroma, A. & Ignaszak, Z. (2020). Open atlas of defects as a supporting knowledge base for cast iron defects analysis. Archives of Foundry Engineering. 20(1), 55-60.

Go to article

Authors and Affiliations

K.C. Dizdar
1
ORCID: ORCID
H. Sahin
1
ORCID: ORCID
M. Ardicli
2
D. Dispinar
3
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Bosch Powertrain Solutions, Bursa, Turkey
  3. Foseco Non-Ferrous Metal Treatment, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The wet flashover voltage of medium voltage insulators made of a silicone rubber is 8% lower than the wet flashover voltage of a porcelain insulator with an identical profile. These surprising results, obtained in 2012, were confirmed again in 2019. The flashover development on the composite insulator is very short (less than 30 ms). On the other hand, on the porcelain insulator, the flashover develops longer (1–3 seconds). The Koppelmann equation was modified, and the Obenaus model to calculate the flashover voltage of insulators under the artificial rain was presented. Attention was paid to the importance of insulator diameters and the phenomenon of water cascades.
Go to article

Bibliography

[1] Kuhlman K., Hochspannungsisolatoren, Elektrotechnische Zeitschrift (in German), vol. 31, iss. 3, pp. 51–55 (1910).
[2] Lustgarten J., High-tension porcelain line insulators, Journal of the Institution of Electrical Engineers, vol. 49, pp. 235–279 (1912).
[3] IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements, edition 3 (2010).
[4] Gallet G., How to design a rain apparatus for the dielectric tests, IEEE PES Summer Meeting, San Francisco, paper A 75 490-3 (1975).
[5] Huc J., Rowe S.W., Wet testing installation design, 5th Int. Symposium on High Voltage Engineering, Athens, paper 52.03 (1983).
[6] Chrzan K.L., Streubel H., Artificial rain test of outdoor long rod insulators, Int. Symposium on High Voltage Engineering, ISH, Cap Town, paper E-31 (2009).
[7] Rizk F.A.M., Kamel S.I., Modelling of HVDC wall bushing flashover in nonuniform rain, IEEE Trans. on Power Delivery, vol. 6, no. 4, pp. 1650–1662 (1991).
[8] Matsuoka M., Naito K., Irie T., Kondo K., Evaluation methods of polymer insulators under contaminated conditions, IEEE Transmission and Distribution Asia Pacific Conference, pp. 2197–2202 (2002).
[9] Chrzan K.L., Swierzyna Z., Artificial rain test of insulators, Przegl˛ad Elektrotechniczny (in Polish), no. 11b, pp. 218–221 (2012).
[10] Szpor S., Dzierzek H.,WiniarskiW., High voltage engineering, WNT (in Polish),Warsaw, vol. 1, p. 88 (1978).
[11] Estorff W., Cron H., High Voltage insulator as pollution problem, ETZ (in German), vol. 73, iss. 3, pp. 57–62 (1952).
[12] Chrzan K.L., Leakage currents on naturally contaminated porcelain and silicone insulators, IEEE Trans. on Power Delivery, vol. 25, no. 2, pp. 904–910 (2010), DOI: 10.1109/TPWRD.2009.2034665.
[13] Streubel H., Calculation of AC Flashover voltage under rain, Hermsdorfer Technische Mitteilungen (in German), iss. 31, pp. 974–980 (1971).
[14] Lan L., Gorur R.S., Computation of ac wet flashover voltage of ceramic and composite insulators, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 5, pp. 1346–1352 (2008), DOI: 10.1109/TDEI.2008.4656243.
[15] Erler F., About AC pollution flashover on thick insulators, Elektrie (in German), iss. 3, pp. 100–102 (1969).
[16] Hao Y., Liao Y., Kuang Z., Sun Y., Shang G., Zhang W., Mao G., Yang L., Zhang F., Li L., Experimental investigation on influence of shed parameters on surface rainwater characteristics of largediameter composite post insulators under rain conditions, Energies, vol. 13, no. 19, 5011 (2020), DOI: 10.3390/en13195011.
[17] Ely C.H.A., Lambeth P.J., Looms J.S.T., The booster shed: prevention of flashover of polluted substation insulators in heavy wetting, IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 6, pp. 2187–2197 (1978).
[18] Yang L., Kuang Z., Sun Y., Liao Y., Hao Y., Li L., Zhang F., Study on Surface Rainwater and Arc Characteristics of High-Voltage Bushing with Booster Sheds under Heavy Rainfall, IEEE Access, vol. 6, pp. 146865–146875 (2020), DOI: 10.1109/ACCESS.2020.3012978.
[19] Okada N., Ikeda K., Kondo K., Ito S., Contamination withstand voltage characteristics of hydrophobic polymers insulators under simulated rain conditions, IEEE Int. Symposium on Electrical Insulation, Boston, USA, pp. 228–231 (2002).
[20] Gorur R.S., de la O A., El-Kishky A., Chowdhary M., Mukherjee H., Sundaram R., Burnham J.T., Sudden flashovers of nonceramic insulators in artificial contamination tests, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 1, pp. 79–86 (1997), DOI: 10.1109/94.590870.
[21] Hartings R., The AC-Behavior of a Hydrophilic and Hydrophobic Post Insulator during Rain, IEEE Trans. on Power Delivery, vol. 9, no. 3, pp. 1584–1592 (1994).
[22] Wang S., Liang X., Huang L., Experimental study on the pollution flashover mechanism of polymer insulators, IEEE Power Engineering Society Winter Meeting, Singapore, pp. 2830–2833 (2000), DOI: 10.1109/PESW.2000.847332.
[23] de la O A., Gorur R.S., Flashover of contaminated nonceramic outdoor insulators in a wet atmosphere, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 6, pp. 814–823 (1998), DOI: 10.1109/94.740762.
Go to article

Authors and Affiliations

Krystian Leonard Chrzan
1
Henryk Marek Brzeziński
2

  1. Wroclaw University of Technology, Poland
  2. Łukasiewicz Research Network – Institute of Electrical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed.

Go to article

Authors and Affiliations

Shilpi Birla
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the potential of p-type InAs/GaSb superlattice for the fabrication of full mid-wave megapixel detectors with n-on-p polarity. A significantly higher surface leakage is observed in deep-etched n-on-p photodiodes compared to p-on-n diodes. Shallow-etch and two-etch-step pixel geometry are demonstrated to mitigate the surface leakage on devices down to 10 µm with n-on-p polarity. A lateral diffusion length of 16 µm is extracted from the shallow etched pixels, which indicates that cross talk could be a major problem in small pitch arrays. Therefore, the two-etch-step process is used in the fabrication of 1280 × 1024 arrays with a 7.5 µm pitch, and a potential operating temperature up to 100 K is demonstrated.
Go to article

Authors and Affiliations

David Ramos
1 2
Marie Delmas
1
Ruslan Ivanov
1
Laura Žurauskaitė
1
Dean Evans
1
Susanne Almqvist
1
Smilja Becanovic
1
Per-Erik Hellström
2
Eric Costard
1
Linda Höglund
1

  1. IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  2.  School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is presentation and comparison of calculation methods of the inductance matrix of a 3-column multi-winding autotransformer. Main and leakage autotransformer inductance was obtained using finite elements method. Static calculations were made at the current supply for 2D and 3D models, and mono-harmonic calculations were made at the voltage supply. In the mono-harmonic calculations the eddy current losses were taken into account, this made it possible to study relationship between the autotransformer parameters and the frequency. Calculations were made using Ansys and the authors' own programs in Matlab.

Go to article

Authors and Affiliations

Marek Gołębiowski
Damian Mazur
Download PDF Download RIS Download Bibtex

Abstract

The 15-winding and 3-column autotransformer supplying an 18-pulse rectifier circuit was developed. Presented methods can be used also for the autotransformers of other topologies supplying different kinds of converters. Presented methods make it possible to exactly calculate main and leakage inductances of the multi-winding autotransformer. The presented analysis of the eigenvalues and eigenvectors of the inductance matrix makes it possible to identify the influence nature of individual modes on the inductance matrix, and to compare the calculation results obtained using the presented methods. Frequency dependence of autotransformer parameters was shown. Also modes of the impedance matrix of the multi-winding autotransformer was investigated, this made it possible to identify the influence nature of individual modes on the inductance matrix. Using presented methods one can exactly calculate main and leakage inductances of the autotransformer. Thanks to this, one can design in optimal way autotransformers for supplying, for example, rectifier circuits, THD coefficients. The results of the measurements and simulations were also shortly presented at the end of the article.

Go to article

Authors and Affiliations

Marek Gołębiowski
Damian Mazur
Download PDF Download RIS Download Bibtex

Abstract

The article introduced some expressions for self- and mutual slot leakage inductance of phase windings for the mathematical model of an induction machine in the natural phase coordinate system and for dq0 model and in an arbitrary coordinate frame. Calculation of self- and mutual slot leakage inductance have been performed for threephase double-layer, delta and delta-modified winding connections. Introduced expressions may be useful in the design of windings and in the analysis of dynamic states of AC electrical machines.

Go to article

Authors and Affiliations

Jan Staszak
Download PDF Download RIS Download Bibtex

Abstract

The paper introduces a comprehensive investigation in end winding inductances of large two-pole turbo-generators. With the aid of an analytic-numeric approach, where Neumann's formula is applied, the influence of geometric characteristics of double-layer stator end windings with involute shape is analysed. This parameter study results in approximation formulas for the stator self and mutual inductances at stand level as well as for the common used end winding leakage inductance. In order to consider field affecting components as pressure plate, flux shield, rotor shaft and rotor retaining ring, finite elements models for two machines (250 MVA and 1150 MVA) are created and computed. The results are integrated in the developed approximation formulas. Finally the simulation results of machine 1 are compared to the data of two different measurements. All approaches introduced in this paper show good correlation. The high speed of the analytic-numeric calculation is combined with the accuracy and opportunity to consider field affecting components within the extensive finite element computation successfully.

Go to article

Authors and Affiliations

Michael Freese
Stefan Kulig
Download PDF Download RIS Download Bibtex

Abstract

In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear

design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results

displayed that: (1) The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron

body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than

corresponding oil leakage of the iron body; (2) The actual oil leakage of different materials consisted of two parts: the foundation leakage

that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3) The aluminum alloyed valve

could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve

leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under

pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

Go to article

Authors and Affiliations

Li Rong
Chen Lunjun
Su Ming
Zeng Qi
Liu Yong
Download PDF Download RIS Download Bibtex

Abstract

We examined the effects of feeding by the polyphagous insect Coccus hesperidum on its host plant Nephrolepis biserrata under different intensities of infestation. As an effect of scale insect feeding there were significant changes in the values of parameters reflecting the state of cell membranes. N. biserrata plants reacted to the biotic stress by increasing guaiacol peroxidase activity and decreasing catalase activity. Our data show that these processes play key roles in plant tolerance mechanisms, here the fern’s response to insect feeding. The observed complex reaction of N. biserrata testifies to actively proceeding, complex and very often contrasting mechanisms triggered with the aim of neutralizing the effects of biotic stress and enabling normal cell functioning in plants attacked by scale insects

Go to article

Authors and Affiliations

Katarzyna Golan
Katarzyna Rubinowska
Edyta Górska-Drabik
Download PDF Download RIS Download Bibtex

Abstract

Electromagnetic forces generated by the short circuit current and leakage flux in low- and high-voltage windings of distribution transformers as well as amorphous core transformers will cause the translation, destruction, and explosion of the windings. Thus, the investigation of these forces plays a significant role for researchers and manufacturers. Many authors have recently used the finite element method to analyze electromagnetic forces. In this paper, an analytic model is first developed for magnetic vector potential formulations to compute the electromagnetic forces (i.e., axial and radial forces) acting on the low- and high-voltage windings of an amorphous core transformer. The finite element technique is then presented to validate the results obtained from the analytical model. The developed model is applied to an actual problem.
Go to article

Authors and Affiliations

Bao Doan Thanh
1
ORCID: ORCID
Doan Duc Tung
1
ORCID: ORCID
Tuan-Ho Le
1
ORCID: ORCID

  1. Faculty of Engineering and Technology, Quy Nhon University, Binh Dinh province, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Since the digitalization of terrestrial television, many countries have discontinued television broadcasting in the UHF band. The freed-up frequencies are now available as digital dividends for mobile and fixed wireless access communication networks (MFCN), particularly for 4G/5G and public safety services in broadband called BBPPDR. Since cable TV still uses the UHF band, leakage from cable TV networks is the most common cause of interference in MFCN networks. Insufficient containment of the radio frequency signals transmitted through a cable system results in cable signal leakage. This article investigates the significance of controlling electromagnetic signal leaks from cable TV networks and how they impact authorized and standardized MFCN networks in the digital dividend bands. The periodic drivetest approach to detect and measure electromagnetic leakage from a cable TV system in the 700 MHz band at a site is detailed. The causes of the detected leaks and offered the appropriate procedure to repair them are also discussed. Additionally, the current measures taken in Hungary to address cable television signal leakage in the digital dividend bands are also discussed and alternative strategies for the adopted test drive approach are proposed.
Go to article

Authors and Affiliations

Hussein Taha
1
Péter Vári
2

  1. Doctoral School of Multidisciplinary Engineering Sciences, Széchenyi István University, Győr, Hungary
  2. Department of Telecommunications, Széchenyi István University, Győr, Hungary
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an evaluation method for the observable trap depth range of space charge when using the pulsed electro-acoustic (PEA) method and its complementarity with the current integration charge (Q(t)) method. Based on the measurement process of the PEA method and the hopping conduction principle of space charge, the relationship between the trap depth and the residence time of charge is analysed. A method to analyse the effect of the measurement speed and the spatial resolution of the PEA system on the observable trap depth is then proposed. Further results show when the single measurement time needs 1 s and the resolution is 10 µm at room temperature, the corresponding trap depth is larger than 0.68 eV. Meanwhile, under high temperature or with voltage applied, the depth can further increase. The combined measurement results of the PEA and Q(t) methods indicate that the former focuses on charge distribution in deep traps, which allows to calculate the distorted electric field. The latter can measure the changing process of the total charge involved in all traps, which is applicable to analysing the leakage current. Therefore, the evaluation of HVDC insulation properties based on the joint application of the two methods is more reliable.
Go to article

Bibliography

[1] Zhai, J., Li, W., Zha, J., Cheng, Q., Bian, X., & Dang, Z. (2020). Space charge suppression of polyethylene induced by blending with ethylene-butyl acrylate copolymer. CSEE Journal of Power and Energy Systems, 6(1), 152–159. https://doi.org/10.17775/CSEEJPES.2019.01150
[2] Wang, G., & Kil, G. (Sep. 2017). Measurement and analysis of partial discharge using an ultra-high frequency sensor for gas-insulated structures. Metrology and Measurement Systems, 24(3), 515–524. https://doi.org/10.1515/mms-2017-0045
[3] Ren, H., Takada, T., Uehara, H., Iwata, S., & Li, Q. (Feb. 2021). Research on charge accumulation characteristics by PEA Method and Q(t) method. IEEE Transactions on Instrumentation and Measurement, 70, 6004209. https://doi.org/10.1109/TIM.2021.3055288
[4] Dong, L., Gan, J., Zhang, P., Zhao, Z., Cheng, B., & Han, D. (2018). An improved resonant thermal converter based on micro-bridge resonator. Metrology and Measurement Systems, 25(4), 715–725. https://doi.org/10.24425/mms.2018.124882
[5] Kuparowitz, M., Sedlakova, V., & Grmela, L. (2017). Leakage current degradation due to ion drift and diffusion in tantalum and niobium oxide capacitors. Metrology and Measurement Systems, 24(2), 255–264. https://doi.org/10.1515/mms-2017-0034
[6] Takada, T., Maeno, T., & Kushibe, H. (1987). An electric stress-pulse technique for the measurement of charge in a plastic plate irradiated by an electron beam. IEEE Transactions on Electrical Insulation, EI-22(4), 497–502. https://doi.org/10.1109/TEI.1987.298914
[7] Gao, C., Qi, B., Gao, Y., Zhu, Z., & Li, C. (2019). Kerr electro-optic sensor for electric field in largescale oil-pressboard insulation structure. IEEE Transactions on Instrumentation and Measurement, 68(10), 3626–3634. https://doi.org/10.1109/TIM.2018.2881803
[8] Chen, G., Chong, Y., & Fu, M. (2006). Calibration of the pulsed electroacoustic technique in the presence of trapped charge. Measurement Science and Technology, 17(7), 1974–1980. https://doi.org/ 10.1088/0957-0233/17/7/041
[9] Zhou, Y., Dai, C., & Huang, M. (2016). Space charge characteristics of oil-paper insulation in the electro-thermal aging process. CSEE Journal of Power and Energy Systems, 2(2), 40–46. https://doi.org/10.17775/CSEEJPES.2016.00020
[10] Wu, J., Huang, R., Wan, J., Chen, Y., & Yin, Y. (2016). Phase identification for space charge measurement under periodic stress of an arbitrary waveform based on the Hilbert transform. Measurement Science and Technology, 27(4), 045004. https://doi.org/10.1088/0957-0233/27/4/045004
[11] Ghorbani, H., Abbasi, A., Jeroense, M., Gustafsson, A., & Saltzer, M. (2017). Electrical characterization of extruded DC cable insulation - the challenge of scaling. IEEE Transactions on Dielectrical and Electrical Insulation, 24(3), 1465–1475. https://doi.org/10.1109/TDEI.2017.006124
[12] Mazzanti, G., Chen, G., Fothergill, J. C., Hozumi, N., Li, J., Marzinotto, M., Mauseth, F., Morshuis, P., Reed, C., & Tzimas, A. (2015). A protocol for space charge measurements in full-size HVDC extruded cables. IEEE Transactions on Dielectrical and Electrical Insulation, 22(1), 21–34. https://doi.org/10.1109/TDEI.2014.004557
[13] Escurra, M. G., Mor, R. A., & Vaessen, P. (2020). Influence of the pulsed voltage connection on the electromagnetic distortion in full-size HVDC cable PEA measurements. Sensors, 20(11), 3087. https://doi.org/10.3390/s20113087
[14] Imburgia, A., Romano, P., Chen, G., Rizzo, G., Sanseverino, R. E., Viola, F., & Ala, G. (2019). The industrial applicability of PEA space charge measurements for performance optimization of HVDC power cables. Energies, 12(21), 4186. https://doi.org/10.3390/en12214186
[15] Rizzo, G., Romano, P., Imburgia, A., & Ala, G. (2019). Review of the PEA method for space charge measurements on HVDC cables and mini-cables. Energies, 12(18), 3512. https://doi.org/10.3390/en12183512
[16] Jung, H., Kim, H., Choi, T., Hwangbo, S. (2019). Automatic measurement system of the space charge distribution by a two-step deconvolution. Journal of Electrical Engineering and Technology, 14(5), 2049–2055. https://doi.org/10.1007/s42835-019-00169-y
[17] International Electrotechnical Commission. (2021). Calibration of space charge measuring equipment based on the pulsed electro-acoustic (PEA) measurement principle (Technical Specification No. IEC/TS 62758:2012). https://webstore.iec.ch/publication/7418
[18] Zhu, Y., Li, S., Min, D., Li, S., Cui, H., & Chen, G. (2018). Space charge modulated electrical breakdown of oil impregnated paper insulation subjected to AC-DC combined voltages. Energies, 11, 1547. https://doi.org/10.3390/en11061547
[19] Tian, F.,&Hou, C. (2018).Atrap regulated space charge suppression model for LDPE based nanocomposites by simulation and experiment. IEEE Transactions on Electrical Insulation, 25(6), 2169–2177. https://doi.org/10.1109/TDEI.2018.007282
[20] Li, J., Liang, H., Xiao, M., Du, B.,&Takada, T. (2019). Mechanism of deep trap sites in epoxy/graphene nanocomposite using quantum chemical calculation. IEEE Transactions on Electrical Insulation, 26(5), 1577–1580. https://doi.org/10.1109/TDEI.2019.008178
[21] Li, J., Zhao, R., Du, B., Su, J., Han, C., & Takada, T. (2020). Application progress of quantum chemical calculation in the field of HVDC insulation. High Voltage Engineering, 46(3), 722–781. https://doi.org/10.13336/j.1003-6520.hve.20200331003
[22] Takada, T., Sakai, T., & Toriyama, Y. (1972). Estimation method of charge distribution in polymeric films. IEEJ Transactions on Fundamental Materials, 92(12), 537–544. https://doi.org/10.1541/ ieejfms1972.92.537
[23] Hanazawa, D., Sonoda, K., Miyake, H., Tanaka, Y.,&Takada, T. (2018). Development of measurement system forDCintegrated charge at high temperature. 2018 Condition Monitoring and Diagnosis (2018), Australia. https://doi.org/10.1109/CMD.2018.8535946
[24] Takada, T., Tohmine, T., Tanaka, Y., & Li, J. (2019). Space charge accumulation in double-layer dielectric systems-measurement methods and quantum chemical calculations. IEEE Electrical Insulation Magazine, 35(3), 36–46. https://doi.org/10.1109/MEI.2019.8804333
[25] Sekiguchi, Y., Hosomizu, K., & Yamazaki, T. (2020). Conduction phenomena of AC- and DC-XLPE analyzed by Q(t) method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 166–168. https://ieeexplore.ieee.org/document/9275786
[26] Wang, W., Sonoda, K., Yoshida, S., Takada, T., Tanaka, Y., & Kurihara, T. (2018). Current integrated technique for insulation diagnosis of water-tree degraded cable. IEEE Transactions on Dielectrical and Electrical Insulation, 25(1), 94–101. https://doi.org/10.1109/TDEI.2018.006738
[27] Fuji, M., Matsushita, K., Fukuma, M.,&Mitsumoto, S. (2020). Study on characteristics of electrical tree in epoxy resin measured by current integrated charge method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 305–308. https://ieeexplore.ieee.org/document/9275799
[28] Fan, L., Tu, Y., Chen, B., Yi, C., Qin, S., Wang, S. (2020). Space charge behavior of polyimide at cryogenic temperatures. IEEE Transactions on Dielectrical and Electrical Insulation, 27(3), 891–899. https://doi.org/10.1109/TDEI.2020.008704
[29] Li, J., Wang, Y., Ran, Z., Yao, H., Du, B., & Takada, T. (2020). Molecular structure modulated trap distribution and carrier migration in fluorinated epoxy resin. Molecules, 25(3), 3071. https://doi.org/10.3390/molecules25133071
Go to article

Authors and Affiliations

Hanwen Ren
1
Tatsuo Takada
2
Yasuhiro Tanaka
2
Qingmin Li
1

  1. North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
  2. Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo, 158-8557, Japan
Download PDF Download RIS Download Bibtex

Abstract

This work aims to improve the total power dissipation, leakage currents and stability without disturbing the logic state of SRAM cell with concept called sub-threshold operation. Though, sub-threshold SRAM proves to be advantageous but fails with basic 6T SRAM cell during readability and writability. In this paper we have investigated a non-volatile 6T2M (6 Transistors & 2 Memristors) sub-threshold SRAM cell working at lower supply voltage of VDD=0.3V, where Memristor is used to store the information even at power failures and restores previous data with successful read and write operation overcomes the challenge faced. This paper also proposes a new configuration of non-volatile 6T2M (6 Transistors & 2 Memristors) subthreshold SRAM cell resulting in improved behaviour in terms of power, stability and leakage current where read and write power has improved by 40% and 90% respectively when compared to 6T2M (conventional) SRAM cell. The proposed 6T2M SRAM cell offers good stability of RSNM=65mV and WSNM=93mV which is much improved at low voltage when compared to conventional basic 6T SRAM cell, and improved leakage current of 4.92nA is achieved as compared.
Go to article

Authors and Affiliations

Zeba Mustaqueem
1
Abdul Quaiyum Ansari
1
Md Waseem Akram
1

  1. Jamia Milia Islamia Central University, India
Download PDF Download RIS Download Bibtex

Abstract

The new topology of three-winding welding transformer is proposed. Each secondary winding is connected in parallel through the separate bridge rectifier to the welding arc. The main feature of the proposed device is parallel working of two secondary windings with different rated voltage. The advantage is nonlinear transformation ratio of current that provides unprecedented power efficiency. The self- and mutual leakage inductances, which are important in power conversion, are calculated by 2D FEA model. The operational current of the device is modelled numerically via P-Spice simulator. The proposed topology is up to 30% more power effective than conventional welding transformer provided that the leakage inductances of primary and secondary windings are correctly fitted. This transformer is used for manual arc welding.

Go to article

Authors and Affiliations

Lyudmila Sakhno
Olga Sakhno
Simon Dubitsky
Download PDF Download RIS Download Bibtex

Abstract

In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.
Go to article

Authors and Affiliations

Mirosław Mikolajewski
Download PDF Download RIS Download Bibtex

Abstract

The transformer-less grid connected inverters are gaining more popularity due to their high efficiency, very low ground leakage current and economic feasibility especially in photovoltaic systems. The major issue which surfaces these systems is that of common mode leakage current which arises due to the absence of an electrical transformer connected between the inverter and the utility grid. Several topologies have evolved to reduce the impact of common mode leakage current and a majority of them have succeeded in eliminating the impacts and have well kept them within the limits of grid standards. This paper compares and analyses the impact of the common mode leakage current for four popular inverter configurations through simulation of the topologies such as H5, H6, HERIC and FBZVR inverters.

Go to article

Authors and Affiliations

D. John Sundar
M. Senthil Kumaran
Download PDF Download RIS Download Bibtex

Abstract

The detection of transformer winding deformation caused by short-circuit current is of great significance to the realization of condition based maintenance. Considering the influence of environment and measurement errors, an online deformation detection method is proposed based on the analysis of leakage inductance changes. First, the operation expressions are derived on the basis of the equivalent circuit and the leakage inductance parameters are identified by the partial least squares regression algorithm. Second, the amount of the leakage inductance samples in a detection time window is determined using the Monte Carlo simulation thought, and then the samples in the confidence interval are obtained. Last, a criteria is built by the mean value changes of the leakage inductance samples and the winding deformation is detected. The online detection method considers the random fluctuation characteristics of the leakage inductance samples, adjust the threshold value automatically, and can quantify the change range to assess the severity. Based on the field data, the distribution of the leakage inductance samples is analyzed to obey the normal function approximately. Three deformation experiments are done by different sub-winding connections and the detection results verify the effectiveness of the proposed method.

Go to article

Authors and Affiliations

Li Jiansheng
Tao Fengbo
Wei Chao
Lu Yuncai
Wu Peng
Zhu Mengzhou
Yu Miao
Download PDF Download RIS Download Bibtex

Abstract

High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL) variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5. Here, the equilibrium between the ion drift and diffusion is achieved. The process of leakage current degradation is therefore partially reversible. When the external electric field is lowered, or the samples are shortened, the leakage current for a given voltage decreases with time and the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5, thus the ion redistribution by diffusion becomes dominant.

Go to article

Authors and Affiliations

Martin Kuparowitz
Lubomír Grmela
Vlasta Sedlakova
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibilities for developing a pole-changing winding with a pole ratio of 3:4 with improved electromagnetic properties. Such a winding can be used in two-speed induction motors for turbo mechanisms. The scheme of the new winding was obtained by using a discretely-specified spatial function method developed at the Tashkent State Technical University. A comparison of the parameters obtained for a similar winding received by the pole amplitude modulation method has been presented. Design of a new motor with a new winding is developed based on the standard induction motor. The paper presents results of laboratory tests, too.
Go to article

Authors and Affiliations

Makhsud Bobojanov
1
ORCID: ORCID

  1. Tashkent State Technical University, 2 University str., 100095, Uzbekistan

This page uses 'cookies'. Learn more