Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Each European Union Member State keeps a register of data on properties located in its territory. The number, type and scope of these properties are determined by each Member State’s needs. The INSPIRE Directive enables the scope of data to be harmonised, and the data to be made available for the purpose of assisting legislators in taking decisions and actions likely to have either direct or indirect impact on the environment. The aim of the study was to indicate the basic differences between the data contained in Polish and Latvian cadastres. Unlike other similar studies analysing the content of data in the cadastre, this article pays special attention to the number of available sets of data about the parcel and its surroundings, the ease of access to these data and the possibility for acquiring them by an interested party without incurring additional fees. This is particularly important in activities related to spatial management and the development of an information society. The results show that in both countries, the decision makers have approached the INSPIRE Directive differently. Direct analyses conducted for the cities of Wrocław (Poland) and Riga (Latvia) demonstrated that the information system in Wrocław contains a considerably greater scope of information available free of charge, is easier to use and offers more services. The Latvian Republic’s spatial information system provides a less-developed scope of information about real estate (without fees) that is dispersed on several websites, which slows down and hinders its use.

Go to article

Authors and Affiliations

Katarzyna Kocur-Bera
Velta Parsova
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design of a versatile mechanism that can enable new directions in amphibious, all-terrain locomotion. The simple, passive, flapped-paddle can be integrated with several structures that are well-suited for locomotion in terrestrial applications. The flapped-paddle overcomes a serious limitation of the conventional flipper where the net lateral forces generated during oscillatory motion in aquatic environments averages out to zero. The flapped-paddle and its mounting, collectively, rests in natural positions in the aquatic environment so as to maximize hydrodynamic force utilization and consequently the propulsive efficiency. The simplicity of the design enabled us to develop a simulation model that concurs well with experimental results. The results reported in the paper are based on integrating the flapped-paddle with the curved leg of the RHex hexapod robot.
Go to article

Bibliography

  1.  A. Crespi, K. Karakasiliotis, A. Guignard, and A.J. Ijspeert, “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Rob., vol. 29, no. 2, pp. 308‒320, 2013.
  2.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 411‒444, 2019.
  3.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen, “From swimming to walking with a salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416‒1420, 2007.
  4.  E. Natarajan, K.Y. Chia, A.A.M. Faudzi, W.H. Lim, Ch.K. Ang, and A. Jafaari, “Bio Inspired Salamander Robot with Pneu-Net Soft ac- tuators-Design and Walking Gait Analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, 2021, Article number: e137055, doi: 10.24425/ bpasts.2021.137055.
  5.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis 2009, pp. 5015‒5020.
  6.  P. Liljebäck, Ø. Stavdahl, K.Y. Pettersen, and J.T. Gravdahl, “Mamba-A waterproof snake robot with tactile sensing,” in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, US, 2014, pp. 294‒301.
  7.  S. Hirose and H. Yamada, “Snake-like robots machine design of biologically inspired robots,” IEEE Rob. Autom. Mag., vol. 3, 2009.
  8.  J. Yu, R. Ding, Q. Yang, M. Tan, and J. Zhang, “Amphibious Pattern Design of a Robotic Fish with Wheel-propeller-fin Mechanisms,” J. Field Rob., vol. 30, no. 5, pp. 702‒716, 2013.
  9.  J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ ASME Trans. Mechatron., vol. 17, no. 5, pp. 847‒856, 2011.
  10.  T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, and J.C. Weaver, “Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3348‒3354, 2019.
  11.  V. Kaznov and M. Seeman, “Outdoor navigation with a spherical amphibious robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan 2010, pp. 5113‒5118.
  12.  Y. Shen, Y. Sun, H. Pu and S. Ma, “Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism,” IEEE Rob. Autom. Lett., vol. 2, no. 4, pp.  2322‒2327, 2017.
  13.  U. Saranli, M. Buehler, and D.E. Koditschek, “Design, modeling and preliminary control of a compliant hexapod robot,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, 2000, vol.3, pp. 2589‒2596.
  14.  U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” Int. J. Rob. Res., vol.  20, no. 7, pp. 616‒631, 2001.
  15.  G. Dudek et al., “Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46‒53, 2007.
  16.  Ch. Georgiades, M. Nahon, and M. Buehler, “Simulation of an underwater hexapod robot,” Ocean Eng., vol. 36, no. 1, pp. 39‒47, 2009.
  17.  X. Liang et al., “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proceed- ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, pp. 3667‒3672.
  18.  S. Zhang, X. Liang, L. Xu, and M. Xu, “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng., vol. 10, no. 4, pp.434‒445, 2013.
  19.  S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, and J. Yang, “AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, p. 1720‒1731, 2015.
  20.  P. Burzyński, Poland, FLHex: A Flapped-Paddle Hexapod, (Aug. 01, 2021). [Online Video]. Available: https://www.youtube.com/ watch?v=Ux1AlOFUUco (Accessed: Aug. 2, 2021).
  21.  A. Simha, R. Gkliva, Ü. Kotta, and M. Kruusmaa, “A Flapped Paddle-Fin for Improving Underwater Propulsive Efficiency of Oscillatory Actuation,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp.  3176‒3181, 2020.
  22.  K.E. Crandell and B.W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” J. Exp. Biol., vol. 218, no. 16, pp. 2518‒2527, 2015.
  23.  W. Yang and B. Song, “Experimental investigation of aerodynamics of feather-covered flapping wing,” Appl. Bionics Biomech., vol. 2017, 2017, Article ID: 3019640. doi: 10.1155/2017/3019640.
  24.  B.B. Dey, S. Manjanna, and Dudek G., “Ninja legs: Amphibious one degree of freedom robotic legs,” in Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Tokio, Japan, 2013, pp. 5622‒5628.
  25.  S.B.A. Kashem, S. Jawed, A. Jubaer, and Q. Uvais, “Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet,” Robotics, vol. 8, no. 3, p. 77, 2019, doi: 10.3390/robotics8030077.
  26.  B. Kwak and J. Bae, “Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming,” Bioinspir. Biomim., vol. 12, no. 3, p. 036014, 2017, doi: 10.1088/1748-3190/aa6c7a.
  27.  S.B. Behbahani and X. Tan, “Design and modeling of flexible passive rowing joint for robotic fish pectoral fins,” IEEE Trans. Rob., vol. 32, no. 5, pp. 1119‒1132, 2016.
  28.  Ch.J. Esposito, J.L. Tangorra, B.E. Flammang, and G.V. Lauder, “A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance,” J. Exp. Biol., vol. 215, no. 1, pp. 56‒67, 2012.
  29.  G.V. Lauder, “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., vol. 40, no. 1, pp. 101‒122, 2000.
  30.  S.C. Licht, M. Wibawa, F.S. Hover, and M.S. Triantafyllou, “Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently,” Technical Raport, Massachusetts Institute of Technology. Sea Grant College Program, 2009.
  31.  Ch. Meurer, A. Simha, Ü. Kotta, and M. Kruusmaa, “Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 4688‒4694.
  32.  G.V. Lauder and E.D. Tytell, “Hydrodynamics of undulatory propulsion,” Fish Physiol., vol. 23, pp. 425‒468, 2005.
  33.  M. Bozkurttas, J. Tangorra, G. Lauder, and R. Mittal, “Understanding the hydrodynamics of swimming: From fish fins to flexible pro- pulsors for autonomous underwater vehicles,” Adv. Sci. Technol., vol.58, pp. 193‒202, 2008.
  34.  N. Martin, Ch. Roh, S. Idrees, and M. Gharib, “To flap or not to flap: comparison between flapping and clapping propulsions,” J. Fluid Mech., vol.822, p. R5, 2017, doi: 10.1017/jfm.2017.252.
  35.  M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, no. 2, pp. 237‒252, 1999.
  36.  R. Gkliva, M. Sfakiotakis, and M. Kruusmaa, “Development and experimental assessment of a flexible robot fin,” in Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 208‒213.
Go to article

Authors and Affiliations

Piotr Burzynski
1
Ashutosh Simha
2
Ülle Kotta
2
Ewa Pawluszewicz
1
Shivakumar Sastry
3

  1. Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland
  2. School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
  3. University of Akron, Department of Electrical and Computer Engineering, Akron, Ohio 44325, USA
Download PDF Download RIS Download Bibtex

Abstract

5G is a fifth-generation wireless technology that enables extremely fast data transfers and massive connection capacity. Existing Mobile health technology requires more reliable connection power and data transfer rates. The purpose of this research is to design, analyse, and compare the performance of a bio-inspired lotus-shaped microstrip patch antenna array with two to three radiating elements. The proposed antenna utilizes proximity coupled indirect microstrip transmission line feeding technique operating in the 24 GHz-30 GHz frequency band. The results indicate that performance continues to improve as the number of radiating elements increases. Moreover, each radiating element is loaded with complementary and non-complementary split-ring resonators (SRRs). The performance of the proposed microstrip antenna array is then analysed and compared with and without split-ring resonators. The findings validate that the proposed bio-inspired metamaterial-based microstrip patch array antenna is more reliable and performs better than an antenna without SRRs.
Go to article

Authors and Affiliations

John Colaco
1
Jillian Cotta
1

  1. Goa College of Engineering, Farmagudi, Ponda, Goa, India
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the issues of the creative process explored by Adam Zagajewski in his writings, especially in his poems forming the cycle of Autoportraits. Indeed, he revisited the subject on numerous occasions, pointing to the importance of inspiration, which, he regretted, received too little attention in today’s world. Be it as it may, in the end it all comes down to the question about how he actually wrote his poems. This article is the first attempt to reconstruct the methods of Zagajewski’s creative work; it also retraces the process of writing a single poem from a poetic note to its final version.
Go to article

Authors and Affiliations

Anna Czabanowska-Wróbel
1
ORCID: ORCID

  1. Wydział Polonistyki Uniwersytetu Jagiellońskiego

This page uses 'cookies'. Learn more