Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes influence of cargo lorry traveling at high speed under a lightweight footbridge on the structure vibrations. The unsteady CFD simulations were performed to obtain aerodynamic load functions on the footbridge. These loads were introduced to nonlinear structural dynamics transient calculation to obtain footbridge response. The influence of aerodynamic forces was evaluated in terms of pedestrian comfort and safety. Parametric study of the influence of vehicle speed, structure clearance, cabin deflectors and distance between lorries grouped in convoy is also presented.

Go to article

Authors and Affiliations

P. Żółtowski
J. Piechna
K. Żółtowski
H. Zobel
Download PDF Download RIS Download Bibtex

Abstract

In this article we describe the SHA-3 algorithm and its internal permutation in which potential weaknesses are hidden. The hash algorithm can be used for different purposes, such aspseudo-random bit sequences generator, key wrapping or one pass authentication, especially in weak devices (WSN, IoT, etc.). Analysis of the function showed that successful preimage attacksare possible for low round hashes, protection from which only works with increasing the number of rounds inside the function.When the hash function is used for building lightweight applications, it is necessary to apply a small number of rounds,which requires additional security measures. This article proposes a variant improved hash function protecting against preimage attacks, which occur on SHA-3. We suggest using an additional external randomness sources obtained from a lightweight PRNG or from application of the source data permutation.
Go to article

Authors and Affiliations

Serhii Onopa
Zbigniew Kotulski
Download PDF Download RIS Download Bibtex

Abstract

Mobile Ad hoc Network (MANET) is a type of Ad hoc network. General properties of MANET open the network to various security threats. Network layer-based Active attacks are widespread and destructive. Available security solutions contain complex calculations. Therefore, the objective of this research is to propose a lightweight security mechanism to enhance the security of data communications between source and destination nodes in a MANET from network layer-based active attack. Blackhole is used as a network layer-based Active attack. The network performance is evaluated using Packet Delivery Ratio (PDR), Average End-to-End Delay (AEED), Throughput, and Simulation Processing Time at Intermediate Nodes (SPTIN). The controller network was used to compare the performance of each network. During the experiment due to the impact of the blackhole attack, compared to the controller network, the PDR was found to be 0.28%, AEED was infinity and Throughput was 0.33%. The performance of the proposed security mechanism was compared with that of the controller network, and the values of PDR, AEED, Throughput, and SPTIN were found to be 98.0825%, 100.9346%, 99.9988%, and 96.5660%, respectively. The data packet delivery ratio was 100.00% compared to that of the controller network. The network that was affected by a blackhole attack showed a higher amount of ADDR than the controller network and the lowest amount of PDR. The network that was affected by the blackhole showed underperformance compared to the controller network. The proposed security mechanism performs well in PDR, AEED, and Throughput compared to the controller network. The AEED and SPTIN values prove that the proposed solution is free from complex calculations. The scope of the solution can be expanded into a lightweight Intruder Detection System to handle different types of security attacks in MANETs.
Go to article

Authors and Affiliations

Uthumansa Ahamed
1
Shantha Fernando
2

  1. Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
  2. University of Moratuwa, Colombo, Sri Lanka
Download PDF Download RIS Download Bibtex

Abstract

Hollow Lightweight Concrete (HLC) beams are gaining popularity due to low cost and low weight as compared with the Solid Lightweight Concrete (SLC) beams. HLC and SLC beams decrease in weight, without losing strength and durability. Flexural and shear behavior of reinforced HLC and SLC beams made with sawdust under two-point load is investigated in this study. The ultimate deformation efficiency and shear resistant mechanism of HLC beams are discussed experimentally and compared with other SLC beams. The beams, tested in this research, are rectangular. Beams were designed and constructed as 12 * 23 * 100 cm. Six concrete beam models were prepared including three SLC beams without the hollow and the other three HLC beams poured hollow 50 * 7.5 cm throughout the all beam of 100 cm. All beams were split according to the distance between vertical stirrups, these stirrups were divided into three specimens 45, 13, and 6 cm. By analyzing six experimental test beams, in this research, investigated the effect of diverse factors on the shear of beams. On comparison with normal concrete beams, this work describes the failure of mechanism, process, and ductility. The first crack loads, ultimate loads, load-deflection behavior, crack patterns and shapes of failure were investigated in this study. The experimental results show the ultimate performance of HLC beams are pure shear and controlled by yielding tension and compression steel bars. Also, it is found that the measured size and configuration of the hollow opening had an effect on the load-carry capacity and mid-span deflection of HLC beams. Thus, the design and construction details of beams can be additionally customized to reduce the total cost and weight of the HLC beams.
Go to article

Authors and Affiliations

Salam Salman Chiad Alharishawi
1
ORCID: ORCID
Nagham Rajaa
2
ORCID: ORCID
Lina Abdulsalam Shihab
3

  1. Mustansiriyah University, College of Engineering, Environmental Engineering Department, Baghdad, Iraq
  2. Mustansiriyah University, College of Engineering, Highway and Transportation Engineering Department, Baghdad, Iraq
  3. Mustansiriyah University, College of Engineering, Civil Engineering Department, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

In the paper the new paradigm for structural optimization without volume constraint is presented. Since the problem of stiffest design (compliance minimization) has no solution without additional assumptions, usually the volume of the material in the design domain is limited. The biomimetic approach, based on trabecular bone remodeling phenomenon is used to eliminate the volume constraint from the topology optimization procedure. Instead of the volume constraint, the Lagrange multiplier is assumed to have a constant value during the whole optimization procedure. Well known MATLAB topology based optimization code, developed by Ole Sigmund, was used as a tool for the new approach testing. The code was modified and the comparison of the original and the modified optimization algorithm is also presented. With the use of the new optimization paradigm, it is possible to minimize the compliance by obtaining different topologies for different materials. It is also possible to obtain different topologies for different load magnitudes. Both features of the presented approach are crucial for the design of lightweight structures, allowing the actual weight of the structure to be minimized. The final volume is not assumed at the beginning of the optimization process (no material volume constraint), but depends on the material’s properties and the forces acting upon the structure. The cantilever beam example, the classical problem in topology optimization is used to illustrate the presented approach.
Go to article

Bibliography

  1.  W. Wang et al., “Space-time topology optimization for additive manufacturing”, Struct. Multidiscip. Optim., vol. 61, no. 1, pp. 1‒18, 2020, doi: 10.1007/s00158-019-02420-6.
  2.  Y. Saadlaoui, et al., “Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes”, J. Manuf. Syst., vol. 43, pp. 178‒286, 2017, doi: 10.1016/j.jmsy.2017.03.006.
  3.  J. Zhu, et al., “A review of topology optimization for additive manufacturing: Status and challenges”, Chin. J. Aeronaut., vol. 34, no. 1, pp. 9‒110, 2021, doi: 10.1016/j.cja.2020.09.020.
  4.  O. Sigmund, “A 99 line topology optimization code written in Matlab”, Struct. Multidiscip. Optim., vol. 21, no. 2, pp. 120‒127, 2001, doi: 10.1007/s001580050176.
  5.  M. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York, Springer, 2003, doi: 10.1007/978-3-662-05086-6.
  6.  M. Bendsoe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197‒224, 1988.
  7.  O. Sigmund and K. Maute, “Topology optimization approaches”, Struct. Multidiscip. Optim., vol. 48, pp. 1031‒1055, 2013, doi: 10.1007/ s00158‒013‒0978‒6.
  8.  Z. Ming and R. Fleury, “Fail-safe topology optimization”, Struct. Multidiscip. Optim., vol. 54, no. 5, pp. 1225‒1243, 2016, doi: 10.1007/ s00158-016-1507-1.
  9.  L. Krog et al., “Topology optimization of aircraft wing box ribs”, AIAA Paper, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004, doi: 10.2514/6.2004-4481.
  10.  Z. Luo et al., “A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures”, Aerosp. Sci. Technol., vol. 10, pp. 364‒373, 2006, doi: 10.1016/j.ast.2005.12.006.
  11.  M. Zhou et al., “Industrial application of topology optimization for combined conductive and convective heat transfer problems”, Struct. Multidiscip. Optim., vol. 54, no 4, pp. 1045‒1060, 2016, doi: 10.1007/s00158-016-1433-2.
  12.  G. Allaire et al., “The homogenization method for topology optimization of structures: old and new”, Interdiscip. Inf. Sci., vol.25/2, pp. 75‒146, 2019, doi: 10.4036/iis.2019.B.01.
  13.  G. Allaire and R.V. Kohn, “Topology Optimization and Optimal Shape Design Using Homogenization”, Topology Design of Structures. NATO ASI Series – Series E: Applied Sciences, M. Bendsoe, C. Soares – eds., vol. 227, pp. 207‒218, 1993, doi: 10.1007/978-94-011- 1804-0_14.
  14.  G. Allaire et al., ”Shape optimization by the homogenization method”, Numer. Math., vol. 76, no. 1, pp. 27‒68, 1997, doi: 10.1007/ s002110050253.
  15.  G. Allaire, Shape Optimization by the Homogenization Method, Springer, 2002, doi: 10.1007/978-1-4684-9286-6.
  16.  J. Wolff, “The Classic: On the Inner Architecture of Bones and its Importance for Bone Growth”, Clin. Orthop. Rel. Res., vol. 468, no. 4, pp. 1056‒1065, 2010, doi: 10.1007/s11999-010-1239-2.
  17.  H. M. Frost, The Laws of Bone Structure, C.C. Thomas, Springfield, 1964.
  18.  R. Huiskes et al., ”Adaptive bone-remodeling theory applied to prosthetic-design analysis”, J. Biomech., vol. 20, pp. 1135‒1150, 1987.
  19.  R. Huiskes, “If bone is the answer, then what is the question?”, J. Anat., vol. 197, no. 2, pp. 145‒156, 2000.
  20.  D.R. Carter, “Mechanical loading histories and cortical bone remodeling”, Calcif. Tissue Int., vol. 36, no. Suppl. 1, pp. 19‒24, 1984, doi: 10.1007/BF02406129.
  21.  R.F.M. van Oers, R. Ruimerman, E. Tanck, P.A.J. Hilbers, R. Huiskes, “A unified theory for osteonal and hemi-osteonal remodeling”, Bone, vol. 42, no. 2, pp. 250‒259, 2008, doi: 10.1016/j.bone.2007.10.009.
  22.  M. Nowak, J. Sokołowski, and A. Żochowski, “Justification of a certain algorithm for shape optimization in 3D elasticity”, Struct. Multidiscip. Optim., vol. 57, no. 2, pp. 721‒734, 2018, doi: 10.1007/s00158-017-1780-7.
  23.  M. Nowak, J. Sokołowski, and A. Żochowski, “Biomimetic approach to compliance optimization and multiple load cases”, J. Optim. Theory Appl., vol. 184, no. 1, pp. 210‒225, 2020, doi: 10.1007/s10957-019-01502-1.
  24.  J. Sokołowski and J-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992, doi: 10.1007/978- 3-642-58106-9.
  25.  D. Gaweł et al., “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741‒750, 2017, doi: 10.1515/bpasts-2017-0080.
Go to article

Authors and Affiliations

Michał Nowak
1
ORCID: ORCID
Aron Boguszewski
1

  1. Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the past few years, overhead copper transmission lines have been replaced by lightweight aluminum transmission lines to minimize the cost and prevent the sagging of heavier copper transmission lines. High strength aluminum alloys are used as the core of the overhead transmission lines because of the low strength of the conductor line. However, alloying copper with aluminum causes a reduction in electrical conductivity due to the solid solution of each component. Therefore, in this study, the authors attempt to study the effect of various Al/Cu ratios (9:1, 7:3, 5:5) to obtain a high strength Al-Cu alloy without a significant loss in its conductivity through powder metallurgy. Low-temperature extrusion of Al/Cu powder was done at 350ºC to minimize the alloying reactions. The as-extruded microstructure was analyzed and various phases (Cu9Al4, CuAl2) were determined. The tensile strength and electrical conductivity of different mixing ratios of Al and Cu powders were studied. The results suggest that the tensile strength of samples is improved considerably while the conductivity falls slightly but lies within the limits of applications.

Go to article

Authors and Affiliations

Deokhyun Han
ORCID: ORCID
Geon-Hong Kim
Jaesung Kim
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the article the effects of backfilling an underground, flexible pipeline, using natural materials (ground backfill) and modified materials, so called Lightweight Backfilling Materials (LBMs) were analyzed. These materials, thanks their lower density, have a positive effect on reducing the loads on the underground pipeline and, consequently, reducing deformations and stresses in its wall. LBMs include lightweight expanded clay aggregates, recycled tire chips used directly in the trench or mixed with the soil, foam concrete, foam glass (granules or plates), and expanded polystyrene, embedded in the ground in the form of blocks. The assessment of the effects of modifying the backfill of the underground pipeline was carried out by means of multi-variant numerical analysis in which models of the pipe-soil system in a plane strain state (2D model) were tested. In these models PEHD pipes were represented, with differential of their diameter (DN315, DN600) and stiffness (SDR), as well as trenches of various shapes (trench with vertical walls and with sloping walls). In the numerical calculations, two variants of trench filling were analyzed: full filling with soil and filling with selected LBMs (expanded clay aggregates, expanded polystyrene, tire chips mixed with soil) in layers separated in the backfill. The results of numerical calculations for particular variants of the models were analyzed in terms of the distribution of vertical displacements and stresses in the soil and pipe deformation. The received pipe deflections and circumferential stresses in their wall were related to the permissible values for PEHD pipes.
Go to article

Authors and Affiliations

Barbara Kliszczewicz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5,44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article introduces a laboratory-scale concept and research on photovoltaic (PV) modules designed for building integrated photovoltaics (BIPV) market, with enhanced architectural aesthetics and no protective glass. The proposed concept involves replacing a typical glass protective and load-bearing element of PV modules with an ethylene tetrafluoroethylene (ETFE) foil while using an aluminium sheet as a load-bearing element in the system. To further enhance the visual appeal of the solution, special modifications were proposed to the geometry of the front security foil. To confirm the feasibility of the proposed concept for mass production, critical tests were conducted on the material system and the process of modifying the surface of the ETFE foil. These tests included evaluating adhesion strength between layers, optical transmission coefficients, and electrical parameters of the developed PV modules. Additionally, the effect of the ETFE film modification on the formation of micro-cracks in solar cells was also investigated.
Go to article

Authors and Affiliations

Kazimierz Drabczyk
1
ORCID: ORCID
Grażyna Kulesza-Matlak
1
ORCID: ORCID
Piotr Sobik
2
ORCID: ORCID
Olgierd Jeremiasz
2
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
  2. Helioenergia Sp. z o.o., ul. Rybnicka 68, 44-238 Czerwionka-Leszczyny, Poland
Download PDF Download RIS Download Bibtex

Abstract

The effects of supplementary cementitious materials (SCM) on the characteristics and internal structure of synthetic aggregate made from ground granulated blast furnace slag are investigated in this study (GGBS). Due to its high pozzolanic activity, GGBS was shown to be superior to other SCM materials, enhancing both the strength and durability of synthetic aggregate. Because sintering uses a lot of energy and generates a lot of pollutants, using a cold-bonded approach to make low density lightweight aggregates is particularly significant from an economic and environmental standpoint. Thus, the utilisation of ground granulated blast furnace slag (GGBS) as a substitute material in the production of green artificial lightweight aggregate (GLA) using the cold bonding method was discussed in this work. Admixtures of ADVA Cast 203 and Hydrogen Peroxide were utilised to improve the quality of GLA at various molar ratios. The freshly extracted GLA was then evaluated for specific gravity, water absorption, aggregate impact, and aggregate crushing in order to determine the optimal proportion blend. As a result, the overall findings offer great application potential in the development of concrete (GCLA). It has been determined that aggregates with a toughness of 14.6% and a hardness of 15.9% are robust. The compressive strength test found that the GCLA has a high strength lightweight concrete of 37.19 MPa and a density of 1845.74 kg/m3. The porous features developed inside the internal structure of GLA have led to GCLA’s less weight compared to conventional concrete.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
M.A. Hassan
1
ORCID: ORCID
M.M.A.B. Abdullah
2
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
M.A.M. Ariffin
3
ORCID: ORCID
A.F.B. Mansor
1
ORCID: ORCID
D.L.C. Hao
1 2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  3. Universiti Teknologi Malaysia, School of Civil Engineering, Faculty of Engineering, Skudai, Johor Bahru, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The by-products of wood sawdust and wood fiber are considered to be waste material. It is utilized in the construction of buildings in the form of sawdust concrete or wood fiber concrete. It is used to make lightweight concrete and possesses heat transfer of a long duration. In this study, wood concrete was made at eleven different mix proportions of cement to wood waste by weight, to produce a lightweight concrete aggregate that has the density 1508-2122 kg/m3. The experimental work consists of 330 concrete specimens as 99 cubes (150 * 150 * 150) mm, 165 cylinders (150 * 300) mm, 33 prisms (50 * 100 * 200) mm, and 33 prisms (100 * 100 * 500) mm. Mechanical and thermal properties such as stiffness, workability, compressive strength, static elasticity modulus, flexural forces, splitting tensile strength and density were examined in the specimens after 28 days of 20 oC curing. Also, compressive strength was investigated at 7 and 14 days of curing at 20 oC. The basic observation of the results shows the values with the limitations of ACI and ASTM. Moreover, it is the perfect way to reduce solid wood waste and produce lightweight concrete to be used in industrial construction. It was found that with the increase in the quantity of wood waste, the strength decreased; however, in terms of workability and concrete with a higher quantity of wood waste held very well. Lightweight concrete aggregate is around 25 percent lighter in dead load than standard concrete. Given all the physical and mechanical properties, the study finds that wood concrete can be used in the construction of buildings.

Go to article

Authors and Affiliations

Salam Salman Chiad Alharishawi
ORCID: ORCID
Haitham Jameel Abd
Suha Rasheed Abass
Download PDF Download RIS Download Bibtex

Abstract

The acoustic effect of windows installed in a prefabricated wood frame façade was considered. Windows inserted into a lightweight wall modify its structural scheme. The research aimed to investigate the possible interaction of the façade’s main components and their actual contribution to the total sound insulation. The principal research question involved the prediction of the acoustic performance of the complete prefabricated panel from the performance of its basic elements, an opaque part and windows. As the frequency-dependent characteristics of the elements differ substantially, the use of single number values for prediction and accuracy was of particular interest. The study is based on laboratory measurements. Initially, two full-scale samples of an opaque wall and four windows were tested separately. Then, several variants of the façade consisting of various combinations of these elements were examined. The results of measurements were juxtaposed and compared with calculated values. The frequency-dependent experimental results were fairly consistent with calculations. The estimations based on single number quantities were also in good agreement with measurements. Thus, it may be concluded that the façade elements did not interact significantly, and the single number calculations give reliable results that can be used in practice.
Go to article

Authors and Affiliations

Jacek Nurzyński
1
ORCID: ORCID

  1. Building Research Institute, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The development of surveillance video vehicle detection technology in modern intelligent transportation systems is closely related to the operation and safety of highways and urban road systems. Yet, the current object detection network structure is complex, requiring a large number of parameters and calculations, so this paper proposes a lightweight network based on YOLOv5. It can be easily deployed on video surveillance equipment even with limited performance, while ensuring real-time and accurate vehicle detection. Modified MobileNetV2 is used as the backbone feature extraction network of YOLOv5, and DSC “depthwise separable convolution” is used to replace the standard convolution in the bottleneck layer structure. The lightweight YOLOv5 is evaluated in the UA-DETRAC and BDD100k datasets. Experimental results show that this method reduces the number of parameters by 95% as compared with the original YOLOv5s and achieves a good tradeoff between precision and speed.
Go to article

Authors and Affiliations

Yurui Wang
1
ORCID: ORCID
Guoping Yang
1
Jingbo Guo
1

  1. Shanghai University of Engineering Science, School of Mechanical and Automotive Engineering, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of investigation of mechanical and thermal properties of lightweight concrete with waste copper slag as fine aggregate. The obtained results were compared with the results of concrete of the same composition in which natural fine aggregate (river sand) was used. The thermal properties tests carried out with the ISOMET 2114 device included determination of the following values: thermal conductivity coefficient, thermal volume capacity and thermal diffusivity. After determining the material density, the specific heat values were also calculated. The thermal parameters were determined in two states of water saturation: on fully saturated material and dried to constant mass at 65°C. Compressive strength, open porosity and bulk density are given as supplementary values. The results of the conducted research indicate that replacing sand with waste copper slag allows to obtain concrete of higher ecological values, with similar mechanical parameters and allowing to obtain significant energy savings in functioning of cubature structures made of it, due to a significantly lower value of thermal conductivity coefficient.
Go to article

Bibliography



[1] L.H. Hawkins, “The influence of air ions, temperature and humidity on subjective wellbeing and comfort”, Journal of Environmental Psychology 1: pp. 279–292, 1981. https://doi.org/10.1016/S0272-4944(81)80026-6
[2] U. Franck, M. Krüger, N. Schwarz, K. Grossmann, S. Röder, U. Schlink, “Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig”, Meteorologische Zeitschrift 22: pp. 167–177, 2013. https://doi.org/10.1127/0941-2948/2013/0384
[3] L. Pérez-Lombard, J. Ortiz, C. Pout, “A review on buildings energy consumption information”, Energy and Buildings 40: 394–398, 2008. https://doi.org/10.1016/j.enbuild.2007.03.007
[4] H. Oktay, R. Yumrutaş, A. Akpolat, “Mechanical and thermophysical properties of lightweight aggregate concretes”, Construction and Building Materials 96: pp. 217–225, 2015. https://doi.org/10.1016/j.conbuildmat.2015.08.015
[5] D. Chwieduk, “Prospects for low energy buildings in Poland", Renewable Energy 16: pp. 1196–1199, 1999. https://doi.org/10.1016/S0960-1481(98)00472-8
[6] R. Baetens, B.P. Jelle, A. Gustavsen, “Aerogel insulation for building applications: A state-of-the-art review”, Energy and Buildings 43: pp. 761–769, 2011. https://doi.org/10.1016/j.enbuild.2010.12.012
[7] A. Soleimani Dorcheh, M.H. Abbasi, “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology 199: 10–26, 2008. https://doi.org/10.1016/j.jmatprotec.2007.10.060
[8] K. Prałat, W. Kubissa, R. Jaskulski, J. Ciemnicka, “Influence of selected micro additives content on thermal properties of gypsum”, Architecture Civil Engineering Environment 12: pp. 69–79, 2019. https://doi.org/10.21307/ACEE-2019-037
[9] S. Ng, B.P. Jelle, L.I.C. Sandberg, T. Gao, Ó.H. Wallevik, “Experimental investigations of aerogel-incorporated ultra-high performance concrete”, Construction and Building Materials 77: pp. 307–316, 2015. https://doi.org/10.1016/j.conbuildmat.2014.12.064
[10] J. Strzałkowski, H. Garbalińska, “Thermal and strength properties of lightweight concretes with the addition of aerogel particles”, Advances in Cement Research 28: pp. 567–575, 2016. https://doi.org/10.1680/jadcr.16.00032
[11] M.G. Gomes, I. Flores-Colen, F. da Silva, M. Pedroso, “Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods”, Construction and Building Materials 172: pp. 696–705, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.162
[12] C. Buratti, E. Moretti, E. Belloni, F. Agosti, “Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation”, Sustainability 6: pp. 5839–5852, 2014. https://doi.org/10.3390/su6095839
[13] K. Łuczaj, P. Urbańska, „Certyd - nowe, lekkie, wysokowytrzymałe kruszywo spiekane”, Materiały Budowlane 1: pp. 44–47, 2015. https://doi.org/10.15199/33.2015.12.13
[14] P. Olszak, „Lekkie kruszywa CERTYD – unikatowym wyrobem budowlanym”, Kruszywa: Produkcja - Transport - Zastosowanie 5: pp. 38–42, 2016.
[15] Z. Suchorab, D. Barnat-Hunek, M. Franus, G. Łagód, “Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge”, Materials 9: p. 317, 2016. https://doi.org/10.3390/ma9050317
[16] A. Bouguerra, A. Ledhem, F. de Barquin, R.M. Dheilly, M. Quéneudec, “Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates”, Cement and Concrete Research 28: pp. 1179–1190, 1998. https://doi.org/10.1016/S0008-8846(98)00075-1
[17] D.K. Panesar, “Cellular concrete properties and the effect of synthetic and protein foaming agents”, Construction and Building Materials 44: pp. 575–584, 2013. https://doi.org/10.1016/j.conbuildmat.2013.03.024
[18] F.J. Blanco, P. Garciéa, P. Mateos, J.M. Ayala, “Characteristics and properties of lightweight concrete manufactured with cenospheres”, Cement and Concrete Research 30: pp. 1715–1722, 2000. https://doi.org/10.1016/S0008-8846(00)00357-4
[19] T. Lecompte, P. Le Bideau, P. Glouannec, D. Nortershauser, S. Le Masson, “Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material”, Energy and Buildings 94: pp. 52–60, 2015. https://doi.org/10.1016/j.enbuild.2015.02.044
[20] V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, J.F. Rodriguez, M. Carmona, N. Al-Manasir, A.-L. Kjøniksen, “Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications”, Energy Conversion and Management 133: pp. 56–66, 2017. https://doi.org/10.1016/j.enconman.2016.11.061
[21] N.P. Sharifi, A. Sakulich, “Application of phase change materials to improve the thermal performance of cementitious material”, Energy and Buildings 103: pp. 83–95, 2015. https://doi.org/10.1016/j.enbuild.2015.06.040
[22] P. Sukontasukkul, P. Uthaichotirat, T. Sangpet, K. Sisomphon, M. Newlands, A. Siripanichgorn, P. Chindaprasirt, “Thermal properties of lightweight concrete incorporating high contents of phase change materials”, Construction and Building Materials 207: pp. 431–439, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.152
[23] P. Bamonte, A. Caverzan, N. Kalaba, M. Lamperti Tornaghi, “Lightweight Concrete Containing Phase Change Materials (PCMs): A Numerical Investigation on the Thermal Behaviour of Cladding Panels”, Buildings 7: p. 35, 2017. https://doi.org/10.3390/buildings7020035
[24] M. Kheradmand, J. Castro-Gomes, M. Azenha, P.D. Silva, J.L.B. de Aguiar, S.E. Zoorob, “Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems”, Construction and Building Materials 89: pp. 48–59, 2015. https://doi.org/10.1016/j.conbuildmat.2015.04.031
[25] P. Suttaphakdee, N. Dulsang, N. Lorwanishpaisarn, P. Kasemsiri, P. Posi, P. Chindaprasirt, “Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite”, Construction and Building Materials 127: pp. 475–483, 2016. https://doi.org/10.1016/j.conbuildmat.2016.10.037
[26] R. Ji, Y. He, Z. Zhang, L. Liu, X. Wang, “Preparation and modeling of energy-saving building materials by using industrial solid waste”, Energy and Buildings 97: 6–12, 2015. https://doi.org/10.1016/j.enbuild.2015.02.015
[27] Ł. Majewski, R. Jaskulski, W. Kubissa, Influence of partial replacement of sand with copper slag on the thermal properties of hardened concrete, in: Selected Papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”, 16–17 May, 2019, Vilnius, Lithuania, 2019: pp. 94–101. https://doi.org/10.3846/mbmst.2019.131
[28] R. Jaskulski, P. Reiterman, W. Kubissa, Investigation of thermal properties of concrete with recycled aggregate and concrete with copper slag and supplementary cementing materials, in: I. Hager (Ed.), Energy Efficient, Sustainable Building Materials and Products, Cracow University of Technology, Cracow, 2017: pp. 283–302.
[29] W. Kubissa, R. Jaskulski, D. Gil, I. Wilińska, “Holistic Analysis of Waste Copper Slag Based Concrete by Means of EIPI Method”, Buildings 10: 1, 2019. https://doi.org/10.3390/buildings10010001
[30] R. Jaskulski, W. Kubissa, Mechanical properties of copper slag waste based CLSM mixtures, in: Selected Papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”, 16–17 May, 2019, Vilnius, Lithuania, Vilnius, Lithuania, 2019: pp. 67–73. https://doi.org/10.3846/mbmst.2019.021
[31] W. Kubissa, R. Jaskulski, “Improving of concrete tightness by using surface blast-cleaning waste as a partial replacement of fine aggregate”, Periodica Polytechnica Civil Engineering 63: pp. 1193–1203, 2019. https://doi.org/10.3311/PPci.14512
[32] W. Kubissa, R. Jaskulski, J. Szpetulski, A. Gabrjelska, E. Tomaszewska, Utilization of fine recycled aggregate and the calcareous fly ash in CLSM manufacturing, in: Advanced Materials Research, 2014: pp. 199–204. https://doi.org/10.4028/www.scientific.net/AMR.1054.199
[33] R. Jaskulski, W. Kubissa, Lightweight concrete with copper slag waste as sand substitution, in: MATEC Web of Conferences, 2018. https://doi.org/10.1051/matecconf/201816303006
[34] W. Kubissa, R. Jaskulski, T. Simon, “Surface blast-cleaning waste as a replacement of fine aggregate in concrete”, Architecture Civil Engineering Environment 3: pp. 89–94, 2017. https://doi.org/10.21307/acee-2017-038
[35] R. Siddique, M. Singh, M. Jain, “Recycling copper slag in steel fibre concrete for sustainable construction”, Journal of Cleaner Production, 122559, 2020. https://doi.org/10.1016/j.jclepro.2020.122559
[36] K. Murari, R. Siddique, K.K. Jain, “Use of waste copper slag, a sustainable material”, Journal of Material Cycles and Waste Management 17: pp. 13–26, 2015. https://doi.org/10.1007/s10163-014-0254-x
[37] S.K. Kirthika, S.K. Singh, A. Chourasia, “Alternative fine aggregates in production of sustainable concrete- A review”, Journal of Cleaner Production, 122089, 2020. https://doi.org/10.1016/j.jclepro.2020.122089
[38] C. Tasdemir, O. Sengul, M.A. Tasdemir, “A comparative study on the thermal conductivities and mechanical properties of lightweight concretes”, Energy and Buildings 151: pp. 469–475, 2017. https://doi.org/10.1016/j.enbuild.2017.07.013
[39] K. Lo-shu, S. Man-qing, S. Xing-sheng, L. Yun-xiu, “Research on several physico-mechanical properties of lightweight aggregate concrete”, International Journal of Cement Composites and Lightweight Concrete 2: pp. 185–191, 1980. https://doi.org/10.1016/0262-5075(80)90036-6
[40] S.E. Gustafsson, “A Non-Steady-State Method of Measuring the Thermal Conductivity of Transparent Liquids”, Zeitschrift Für Naturforschung A 22: pp. 1005–1011, 1967. https://doi.org/10.1515/zna-1967-0704
[41] S.E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials”, Review of Scientific Instruments 62: pp. 797–804, 1991. https://doi.org/10.1063/1.1142087
[42] M.G. Gomes, I. Flores-Colen, H. Melo, A. Soares, “Physical performance of industrial and EPS and cork experimental thermal insulation renders”, Construction and Building Materials 198: pp. 786–795, 2019. https://doi.org/10.1016/j.conbuildmat.2018.11.151
[43] N. Latroch, A.S. Benosman, N.-E. Bouhamou, Y. Senhadji, M. Mouli, “Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride”, Construction and Building Materials 175: pp. 77–87, 2018. https://doi.org/10.1016/j.conbuildmat.2018.04.173
[44] M. Záleská, M. Pavlíková, J. Pokorný, O. Jankovský, Z. Pavlík, R. Černý, “Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics”, Construction and Building Materials 180: pp. 1–11, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.250
[45] R. Jaskulski, M.A. Glinicki, W. Kubissa, M. Dąbrowski, “Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate”, International Journal of Heat and Mass Transfer 130: pp. 882–892, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.050
[46] R. Jaskulski, W. Kubissa, P. Reiterman, O. Holčapek, Thermal properties of heavy concrete for small pre-cast shielding elements, in: Special Concrete and Composites 2019: 16th International Conference, 2020: p. 20011. https://doi.org/10.1063/5.0000358
[47] H. Uysal, R. Demirboğa, R. Şahin, R. Gül, “The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete”, Cement and Concrete Research 34: pp. 845–848, 2004. https://doi.org/10.1016/j.cemconres.2003.09.018
[48] J. Kuterasińska, A. Król, „Żużel pomiedziowy jako surowiec w produkcji alkalicznie aktywowanych spoiw żużlowych”, Prace Instytutu Ceramiki i Materiałów Budowlanych 7: pp. 21–36, 2014.
[49] P. Gambal, Wpływ struktury żużla pomiedziowego z pieca elektrycznego na wybrane cechy matrycy cementowej, Politechnika Poznańska, 2013.
[50] L. Janecka, B. Weryński, „Wykorzystanie odpadu przemysłowego – zużytego ścierniwa POLGRIT do produkcji cementu”, Prace Instytutu Szkła, Ceramiki, Materiałów Ogniotrwałych I Budowlanych 1: pp. 39–50, 2008.
[51] J. Rzechuła, Gospodarcze wykorzystanie odpadowego ścierniwa z żużla pomiedziowego, in: A. Łuszczkiewicz (Ed.), Fizykochemiczne Problemy Mineralurgii, Z. 28, Politechnika Wrocławska, Wrocław, 1994: pp. 207–218.
[52] A. Duszyński, W. Jasiński, A. Pryga-Szulc, „Aggregates from granulated copper slag as a component for road construction mixtures”, Biuletyn Państwowego Instytutu Geologicznego pp. 85–92, 2017. https://doi.org/10.5604/01.3001.0010.0074
Go to article

Authors and Affiliations

Roman Jaskulski
1
ORCID: ORCID
Piotr Dolny
1
ORCID: ORCID
Yaroslav Yakymechko
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the determination of the impact of earthquakes of varying intensity on the structure of geodesic domes. The structures of the analyzed domes were designed on the basis of the regular octahedron according to two different methods of creating their topology. The use of four seismic records of different intensity and duration of the record made it possible to subject 8 models to numerical analysis. The designed spatial structures are domes with a steel cross-section, thanks to which they are undoubtedly characterized by their lightness and the possibility of covering very large areas, without the need to use internal supports. Designing steel domes is currently a challenge for constructors, as well as architect, who take into account their aesthetic considerations. The paper presents the seismic response of geodesic domes in applied different directions (two horizontal “X” and “Y” and one vertical “Z”), using the Time History method. The values of forced vibrations and recording intensity were shown, and on this basis, an attempt was made to determine which seismic record may be more unfavorable for the designed geodesic domes created according to two different methods of shaping the topology of their structures. For this purpose, the FFT (Fast Fourier Transform) method was used. The maximum accelerations and displacements of the structures were also analyzed. The conducted analysis shows the influence of seismic excitations on geodetic dome structures, depending on the applied method (method 1 and 2) of shaping their topology. This paper will undoubtedly be useful in designing a geodesic dome structure in a seismic area. In addition, this analysis can be helpful in assessing the effects of an incidental earthquake.
Go to article

Authors and Affiliations

Dominika Bysiec
1
ORCID: ORCID
Tomasz Maleska
1
ORCID: ORCID

  1. Opole University of Technology, Faculty of Civil Engineering and Architecture
Download PDF Download RIS Download Bibtex

Abstract

UAV technology is being applied for DSM generation in open-pit mines with a well-established fact that the precision of such DSM is improved by increasing the number of Ground Control Points (GCPs). However, DSMs are updated frequently in an open-pit mine where the surface is excavated continuously. This imposes a challenge to arrange and maintain the GCPs in the field. Therefore, an optimal number of GCPs should be determined to obtain sufficiently accurate DSMs while maintaining safety, time, and cost-effectiveness in the project. This study investigates the influence of the numbers of GCPs and their network configuration in the Long Son quarry, Vietnam. The analysis involved DSMs generated from eight cases with a total of 18 GCPs and each having five network configurations. The inter-case and intra-case accuracy of DSMs is assessed based on RMSEXY, RMSEZ, and RMSEXYZ. The results show that for a small- or medium-sized open-pit mine having an area of approximately 36 hectares, five GCPs are sufficient to achieve an overall accuracy of less than 10 cm. It is further shown that the optimal choice of the number of GCPs for DSM generation in such a mining site is seven due to a significant improvement in accuracy (<3.5 cm) and a decrease in configuration dependency compared to the five GCPs.
Go to article

Bibliography


[1] B. Kršák, P. Blišťan, A. Pauliková, P. Puškárová, Ľ. Kovanič, J. Palková, V. Zelizňaková, Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement 91, 276-287 (2016). DOI: https://doi.org/10.1016/j.measurement.2016.05.028
[2] C . Cryderman, S.B. Mah, A. Shufletoski, Evaluation of UAV Photogrammetric Accuracy for Mapping and Earthworks Computations. GEOMATICA 68, 309-317 (2014). DOI: https://doi.org/10.5623/cig2014-405
[3] C . Hugenholtz, O. Brown, J. Walker, T. Barchyn, P. Nesbit, M. Kucharvzyk, S. Myshak, Spatial accuracy of UAVderived orthoimagery and topography: comparing photogrammetric models processed with direct geo-referencing and ground control points. GEOMATICA 70, 21-30 (2016). DOI: https://doi.org/10.5623/cig2016-102
[4] D. Tien Bui, N.Q. Long, X.-N. Bui, V.-N. Nguyen, C. Van Pham, C. Van Le, P.-T.T. Ngo, D. Tien Bui, B. Kristoffersen, Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment, in: D. Tien Bui, A. Ngoc Do, H.-B. Bui, N.-D. Hoang, (eds.), Advances and Applications in Geospatial Technology and Earth Resources, Springer International Publishing, Cham, 17-33 (2018). DOI: https://doi.org/10.1007/978-3-319-68240-2_2
[5] F . Agüera-Vega, F. Carvajal-Ramírez, P. Martínez-Carricondo, Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 143, 04016025 (2017). DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206
[6] F . Beretta, H. Shibata, R. Cordova, R. de L. Peroni, J. Azambuja, J.F.C.L. Costa, Topographic modelling using UAVs compared with traditional survey methods in mining. REM, Int. Eng. J. 71, 463-470 (2018). DOI: https://doi.org/10.1590/0370-44672017710074
[7] F . Mancini, M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, G. Gabbianelli, Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing 5, 6880-6898 (2013). DOI: https://doi.org/10.3390/rs5126880
[8] G . Esposito, G. Mastrorocco, R. Salvini, M. Oliveti, P. Starita, Application of UAV photogrammetry for the multitemporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 76, 103 (2017). DOI: https://doi.org/10.1007/s12665-017-6409-z
[9] G . Forlani, E. Dall’Asta, F. Diotri, U.M. di Cella, R. Roncella, M. Santise, Quality assessment of DSMs produced from UAV flights geo-referenced with onboard RTK positioning. Remote Sensing 10, 311 (2018). DOI: https://doi.org/10.3390/rs10020311
[10] J. Fernández-Lozano, A. González-Díez, G. Gutiérrez-Alonso, R. Carrasco, J. Pedraza, J. García-Talegón, G. Alonso- Gavilán, J. Remondo, J. Bonachea, M. Morellón, New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain. Minerals 8, 518 (2018). DOI: https://doi.org/10.3390/min8110518
[11] J. Malos, B. Beamish, L. Munday, P. Reid, C. James, Remote monitoring of subsurface heatings in opencut coal mines, in: N. Aziz and B. Kininmonth (eds.), Proceedings of the 2013 Coal Operators’ Conference, Mining Engineering, University of Wollongong (2013).
[12] J.-C. Padró, V. Carabassa, J. Balagué, L. Brotons, J.M. Alcañiz, X. Pons, Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 657, 1602-1614 (2019). DOI: https://doi.org/10.1016/j.scitotenv.2018.12.156
[13] J.K.S. Villanueva, A.C. Blanco, Optimization of ground control point (GCP) configuration for unmanned aerial vehicle (UAV) survey using structure from motion (SfM). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-4/W12, 167-174 (2019). DOI: https://doi.org/10.5194/isprs-archives-XLII-4-W12-167-2019
[14] J.M.G. Rangel, G.R. Gonçalves, J.A. Pérez, The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 39, 7154-7171 (2018). DOI: https://doi.org/10.1080/01431161.2018.1515508
[15] K. Szentpeteri, T.R. Setiawan, A. Ismanto, Drones (UAVs) in mining and Exploration. An application example: pit mapping and geological modelling, in: Unconventional Exploration Target & Latest Technique and New Tools in Mineral and Coal Exploration, (2016).
[16] K.N. Tahar, An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-2/W2, 93-98 (2013). DOI: https://doi.org/10.5194/isprsarchives-XL-2-W2-93-2013
[17] L. Ge, X. Li, A.H.-M. Ng, UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, 5422-5425 (2016). DOI: https://doi.org/10.1109/IGARSS.2016.7730412
[18] Ľ. Kovanič, P. Blišťan, V. Zelizňaková, J. Palková, Surveying of open pit mine using low-cost aerial photogrammetry, in I. Ivan, A. Singleton, J. Horák, T. Inspektor (Eds.), The Rise of Big Spatial Data. Springer International Publishing, Cham (2017). DOI: https://doi.org/10.1007/978-3-319-45123-7_9
[19] L. Van Canh, C. Xuan Cuong, N. Quoc Long, L. Thi Thu Ha, T. Trung Anh, X.-N. Bui, Experimental Investigation on the Performance of DJI Phantom 4 RTK in the PPK Mode for 3D Mapping Open-Pit Mines. Inżynieria Mineralna 1, 65-74 (2020). DOI: https://doi.org/10.29227/IM-2020-02-10
[20] M. Alvarado, F. Gonzalez, A. Fletcher, A. Doshi, Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 15, 19667-19687 (2015). DOI: https://doi.org/10.3390/s150819667
[21] M. Francioni, R. Salvini, D. Stead, R. Giovannini, S. Riccucci, C. Vanneschi, D. Gullì, An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Comput. Geotech. 67, 46-63 (2015). DOI: https://doi.org/10.1016/j.compgeo.2015.02.009
[22] M. Shahbazi, G. Sohn, J. Théau, P. Menard, Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling. Sensors 15, 27493-27524 (2015). DOI: https://doi.org/10.3390/s151127493
[23] M.R. James, S. Robson, M.W. Smith, 3-D uncertainty-based topographic change detection with structure-frommotion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landforms 42, 1769-1788 (2017). DOI: https://doi.org/10.1002/esp.4125
[24] M.R. James, S. Robson, S. d’Oleire-Oltmanns, U. Niethammer, Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 280, 51-66 (2017). DOI: https://doi.org/10.1016/j.geomorph.2016.11.021
[25] N.Q. Long, B.X. Nam, C.X. Cuong, L.V. Canh, An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. Inżynieria Mineralna 11, 248-262 (2019). DOI: https://doi.org/10.29227/IM-2019-02-79
[26] O . Mian, J. Lutes, G. Lipa, J.J. Hutton, E. Gavelle, S. Borghini, Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-1/W4, 397-402 (2015). DOI: https://doi.org/10.5194/isprsarchives-XL-1-W4-397-2015
[27] P .L. Raeva, S.L. Filipova, D.G. Filipov, Volume computation of a stockpile-a study case comparing GPS and UAV measurements in an open pit quarry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 999-1004 (2016). DOI: https://doi.org/10.5194/isprsarchives-XLI-B1-999-2016
[28] S. Coveney, K. Roberts, Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 38, 3159-3180 (2017). DOI: https://doi.org/10.1080/01431161.2017.1292074
[29] T. Tonkin, N. Midgley, Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sensing 8, 786 (2016). DOI: https://doi.org/10.3390/rs8090786
[30] Z. Ren, J. Tang, T. Kalscheuer, H. Maurer, Fast 3‐D large‐scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method. J. Geophys. Res. Solid Earth 122, 79-109 (2017). DOI: https://doi.org/10.1002/2016JB012987
Go to article

Authors and Affiliations

Nguyen Quoc Long
1
Ropesh Goyal
2
Luyen K. Bui
1
Cao Xuan Cuong
1
Le Van Canh
1
Nguyen Quang Minh
1
Xuan-Nam Bui
3

  1. Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam
  2. Indian Institute of Technology Kanpur, Department of Civil Engineering, Kanpur-208016, Uttar Pradesh, India
  3. Hanoi University of Mining and Geology, Faculty of Mining,18 Vien street, Hanoi, 10000, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

A spinal code is the type of rateless code, which has been proved to be capacity- achieving over both a binary symmetric channel (BSC) and an additive white Gaussian noise (AWGN) channel. Rateless spinal codes employ a hash function as a coding kernel to generate infinite pseudo-random symbols. A good hash function can improve the perfor- mance of spinal codes. In this paper, a lightweight hash function based on sponge structure is designed. A permutation function of registers is a nonlinear function. Feedback shift registers are used to improve randomness and reduce bit error rate (BER). At the same time, a pseudo-random number generator adopts a layered and piecewise combination mode, which further encrypts signals via the layered structure, reduces the correlation between input and output values, and generates the piecewise random numbers to compensate the shortcoming of the mixed linear congruence output with fixed length. Simulation results show that the designed spinal code with the lightweight hash function outperforms the original spinal code in aspects of the BER, encoding time and randomness.

Go to article

Authors and Affiliations

Lina Wang
Xinran Li
Download PDF Download RIS Download Bibtex

Abstract

Waste tyres are among the largest and most problematic sources of waste today, due to the large volume produced and their long-lasting decomposition and resistance to water and extreme temperatures. Since 2000 in Europe the EU Landfill Directive has forbidden the disposal of waste tyres in a landfill. Since then waste tyre derived products (TDP), including whole tyres, tyre bales, shreds, chips, and crumb rubber, have been widely used also in civil engineering applications. The baling is nowadays the best way for the product recycling of waste tyres. Waste tyre bales have considerable potential for use in road applications, particularly where their low density, permeability and ease of handling give them an advantage. Road applications include but are not limited to: embankments construction, slope stabilization and repair (landslides), road foundations over soft ground, backfill material for retaining walls and gravity retaining structures (gabion-type). Several case studies, showing the opportunities to use waste tyre bales in road construction, are presented and illustrated in the paper preceded by providing the engineering properties of waste tyre bales, used within the road structures constructed worldwide. The article also describes the first world application of abutment backfill from the tyre bales in a road bridge, realized in Poland.
Go to article

Bibliography


[1] P.J. Bosscher, T.B. Edil, S. Kuraoka, “Design of highway embankments using tire chips”, Journal of Geotechnical and Geoenvironmental Engineering, 123: pp. 295–304, 1997.
[2] J.H. Lee, R. Salgado, A. Bernal, C.W. Lovell, “Shredded tires and rubber-sand as lightweight backfill”, Journal of Geotechnical and Geoenvironmental Engineering, 125: pp. 132–141, 1999. https://doi.org/10.1061/(asce)1090-0241(1999)125:2(132).
[3] R.K. Mittal, G. Gill, “Sustainable application of waste tire chips and geogrid for improving load carrying capacity of granular soils”, Journal of Cleaner Production, 200: pp. 542–551, 2018. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.287.
[4] A. Mahgoub, H.E. Naggar, “Coupled TDA-geocell stress-bridging system for buried corrugated metal pipes”, Journal of Geotechnical and Geoenvironmental Engineering, 146: July, 2020. https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103761.
[5] J.D. Simm, M.G. Winter, S. Waite, “Design and specification of tyre bales in construction”, Proceedings of the Institution of Civil Engineers – Waste and Resource Management, 161: pp. 67–76, 2008. https://doi.org/10.1680/warm.2008.161.2.67.
[6] M.G. Winter, J.M. Reid, P.I.J. Griffiths, “Tyre bales in construction: case studies”, Report PPR 045. TRL Limited, Crowthorne, UK, 2005.
[7] PAS (Publicly Available Specification), “Specification for production of tyre bales for use in construction”, PAS 108. London, UK, 2007.
[8] A. Duda, M. Kida, S. Ziembowicz, P. Koszelnik, “Application of material from used car tyres in geotechnics – an environmental impact analysis”, PeerJ 8:e9546, 2020. https://doi.org/10.7717/peerj.9546
[9] M. Gualtieri, M. Andrioletti, C. Vismara, M. Milani, M. Camatini, “Toxicity of tire debris leachates”, Environment International, 31: pp. 723–730, 2005. https://doi.org/10.1016/j.envint.2005.02.001
[10] P. Hennebert, S. Lambert, F. Fouillen, B. Charrasse, “Assessing the environmental impact of shredded tires as embankment fill material”, Canadian Geotechnical Journal, 51: pp. 469–478, 2014. https://doi.org/10.1139/cgj-2013-0194.
[11] L. Liu, G. Cai, J. Zhang, X. Liu, K. Liu, “Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review”, Renewable and Sustainable Energy Reviews, 126: pp. 109–831, 2020. https://doi.org/https://doi.org/10.1016/j.rser.2020.109831.
[12] K. Sonti, S. Senadheera. P. W. Jayawickrama, P. T. Nash, D. D. Gransberg, “Evaluate the uses for scrap tires in transportation facilities”. Research Study No 0-1808, Centre for Multidisciplinary Research in Transportation. Texas Tech University, Lubbock, TX, USA, 2000.
[13] I.F. Hodgson, S.P. Beales, M.J. Curd, “Use of tyre bales as lightweight fill for the A421 improvements scheme near Bedford, UK”, Engineering Geology Special Publications, 26: pp. 101–108, 2012. https://doi.org/10.1144/EGSP26.12.
[14] H. Harri, “Tyre bales form part of Finnish Road”, World Highways, 14: March, 18, 2005.
[15] M.G. Winter, G.R.A. Watts, P.E. Johnson, “Tyre bales in construction”. Report PPR 080. TRL Limited, Crowthorne, UK, 2006.
[16] W. Prikryl, R. Williammee, M.G. Winter, “Slope failure repair using tyre bales at Interstate Highway 20, Tarrant County, Texas, USA”, Quarterly Journal of Engineering Geology and Hydrogeology, 38: pp. 377–386, 2005. https://doi.org/10.1144/1470-9236/04-065.
[17] M.G. Winter, “Road foundation construction using lightweight tyre bales”, Proceedings of the 18th ICSMGE, Paris, pp. 3275–3278, 2013.
[18] C. Mackenzie, T. Saarenketo, “The B871 tyre bale project. The use of recycled tyre bales in a lightweight road embankment over peat”, Research report. Roadscanners, Rovaniemi, Finland, 2003.
[19] P. Bandini, A. T. Hanson, F. P. Castorena, S. Ahmed, “Use of tire bales for erosion control projects in New Mexico”, ASCE Geotechnical Special Publication 179: Characterization, Monitoring, and Modeling of Geosystems, pp. 638–645, New Orleans, LA, USA, 2008.
[20] A. Duda, D. Sobala, “Initial research on recycled tyre bales for road infrastructure applications”, SSP - Journal of Civil Engineering, 12: pp. 55–62, 2017. https://doi.org/10.1515/sspjce-2017-0019
[21] A. Duda, T. Siwowski, “Pressure evaluation of bridge abutment backfill made of waste tyre bales and shreds: experimental and numerical study”, Transportation Geotechnics, 24: pp. 100–366, 2020. https://doi.org/10.1016/j.trgeo.2020.100366.
[22] A. Duda, T. Siwowski, “Experimental investigation and first application of lightweight abutment backfill made of used tyre bales”, Proceedings of CEE 2019. Lecture Notes in Civil Engineering, 47: pp. 66–73, 2020. https://doi.org/10.1007/978-3-030-27011-7_9
[23] B. Freilich, J.G. Zornberg, “Mechanical properties of tire bales for highway applications”. Report No. FHWA/TX-10/0-5517-1, Center for Transportation Research. University of Texas, Austin, TX, USA, 2009.
Go to article

Authors and Affiliations

Aleksander Duda
1
ORCID: ORCID
Tomasz Siwowski
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil Engineering, Environment and Architecture, Al. Powstanców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper an alternative method for increasing punching shear resistance of the flat slabs from lightweight aggregate concrete by means of hidden steel fibre reinforced capital was presented. Previous experimental studies demonstrated that the addition of steel fibres to concrete allows for increase in the punching shear resistance of flat slab. Steel fibres modify the tensile strength of concrete, which translates into increased ductility of the material. The results of the experimental investigations were presented, the aim of which was to assess the effectiveness of the proposed solution. For economic and technological reasons, a hidden capital of a height equal to half of the slabs depth was made so that the top reinforcement could be installed later. It was found that presented solution allowed to increase the load carrying capacity by about 36% with respect to the control element, made entirely of lightweight aggregate concrete.

Go to article

Authors and Affiliations

M. Gołdyn
T. Urban
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results of experimental investigations concerning flat slabs made from reinforced lightweight concrete with sintered fly ash aggregate CERTYD were presented. In the research program 6 models made in a natural scale were included. The main variable parameter was slab longitudinal reinforcement ratio. The aim of investigation was the experimental verification of efficiency of double-headed studs as punching shear reinforcement. In the existing technical approvals such kind of reinforcement was allowed only in normal concrete slabs. It was demonstrated that double-headed studs can be an effective transverse reinforcement of lightweight aggregate concrete slabs. The use of double-headed studs resulted in increase in the ultimate load from 19% to 44%, depending on the slab reinforcement ratio which ranged from 0.5% to 1.2%. The comparative analysis showed that the Eurocode 2 provisions were conservative in relation to the experimental results, which were on average 42% higher than the theoretical ones however with a very low 7% coefficient of variation.

Go to article

Authors and Affiliations

M. Gołdyn
Ł. Krawczyk
W. Ryżyński
T. Urban
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the principles of the Critical Shear Crack Theory (CSCT) in terms of the punching shear analysis of flat slabs made from lightweight aggregate concretes. The basic assumptions of the CSCT were discussed, explaining the differences with regard to the calculation of ordinary concrete flat slabs, relating mainly to the adopted failure criterion associated with ultimate slab rotation. Taking into account the observations and conclusions from the previous experimental investigations, it was confirmed, that contribution of lightweight aggregate particles in the aggregate interlock effect should be ignored, due to possibility of aggregate breaking. However, the analysis of the profile of failure surface confirmed, that particles of the natural fine aggregate increase the roughness of the surface and should be included by formulating failure criterion for LWAC slabs.
The theoretical load-rotation relationships were compared with the results of measurements, confirming good agreement in most cases. The theoretical ultimate rotations were lower on average by about 11% than the experimental ones. The analysis of 57 results of the experimental investigations on punching shear of LWAC slabs made from various types of artificial aggregates showed a very good agreement with predictions of the CSCT. The obtained ratio of the experimental to theoretical load was 1.06 with a coefficient of variation of 9.1%. The performed parametric study demonstrated a low sensitivity of the correctness of the CSCT predictions to a change in a fairly wide range of parameters such as: the longitudinal reinforcement ratio, concrete compressive strength and concrete density.
Go to article

Authors and Affiliations

Michał Gołdyn
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Concrete Structures, al. Politechniki 6, 93-590 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Escalating quantity of industrial by-products generated, including oil palm shell (OPS) and palm oil fuel ash (POFA ) of the palm oil industries, has been a concern to many analysts. They are mostly disposed off as wastes that would heavily impact the environment quality. Therefore, this paper aimed to investigate the possibility of consuming these wastes by using OPS and POFA as replacement materials for fine aggregates in the concrete mixture. The mixtures were prepared by integrating unground palm oil fuel ash of 0%, 10%, and 20% (by weight of sand) to produce lightweight concrete. The experiments observed the mechanical performance of these specimens for 180 curing days. The results show the enhancement of concrete strength relative to the control mixture by using 10% of ash. This is owing to void filling mechanism and product of pozzolanic reaction due to the fine particles of the ash.
Go to article

Authors and Affiliations

H. Mohd Hanafi
1
ORCID: ORCID
Khairunisa Muthusamy
2
ORCID: ORCID
W.A. Saffuan
2
ORCID: ORCID
A.M.A. Budiea
3
ORCID: ORCID
A. Kusbiantoro
4
ORCID: ORCID
M. Nabilla
2
ORCID: ORCID
A.R. Rafiza
5
ORCID: ORCID
K. Błoch
6
ORCID: ORCID

  1. Kolej Komuniti Pekan, Jalan-Pekan-Kuantan, Kampung Batu Satu Peramu, Pekan, Pahang
  2. Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, Gambang, Pahang
  3. Universiti Malaysia Pahang, Faculty of Industrial Management, Gambang, Pahang
  4. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEG eoGT ech), 01000 Perlis, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this experimental study was to examine whether an assisting layer of lightweight expanded clay aggregate (LECA) of the granulation 1–4 mm, introduced into a subsoil, is able to improve an efficiency of removal of total nitrogen and total phosphorus from domestic wastewater. In the investigations, an assisting 0.10 and 0.20 m thick LECA layer was applied. It has been observed that the effectiveness of removal of total suspended solids (TSS), total nitrogen and total phosphorus from wastewater as well as the level of biochemical oxygen demand ( BOD 5) and chemical oxygen demand ( COD) is in accordance with the Polish standards on wastewater disposal into grounds and surface water. The performed experiments showed that the effectiveness of raw wastewater purification for the medium sand soil bed with the 0.20 m thick assisting LECA layer is higher than for the 0.10 m thick assisting layer. In the medium sand soil bed with the 0.20 m thick assisting LECA layer, the removal efficiency regarding total nitrogen increased by 20.6%, total phosphorus by 5.2%, ammonium nitrogen by 8.8% and TSS by 5.3%, and reduction efficiency regarding BOD 5 increased by 1.7% and COD by 2.3% with relation to the 0.10 m thick assisting LECA layer (all percentages – in average). The results of the experiment showed that the LECA with the granulation 1–4 mm can be used to assist in removal of total nitrogen and total phosphorus from wastewater with application of infiltration drainage.
Go to article

Authors and Affiliations

Marek Kalenik
1
ORCID: ORCID
Piotr Wichowski
1
ORCID: ORCID
Marek Chalecki
2
ORCID: ORCID
Adam Kiczko
1
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to highlight the performance of beams composed of lightweight concretefilled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.

Go to article

Authors and Affiliations

Khawala A. Farhan
Muhaned A. Shallal
Download PDF Download RIS Download Bibtex

Abstract

This study aims to optimize the 2-cylinder in-line reciprocating compressor crankshaft. As the crankshaft is considered the "bulkiest" component of the reciprocating compressor, its weight reduction is the focus of current research for improved performance and lower cost. Therefore, achieving a lightweight crankshaft without compromising the mechanical properties is the core objective of this study. Computational analysis for the crankshaft design optimization was performed in the following steps: kinematic analysis, static analysis, fatigue analysis, topology analysis, and dynamic modal analysis. Material retention by employing topology optimization resulted in a significant amount of weight reduction. A weight reduction of approximately 13% of the original crankshaft was achieved. At the same time, design optimization results demonstrate improvement in the mechanical properties due to better stress concentration and distribution on the crankshaft. In addition, material retention would also contribute to the material cost reduction of the crankshaft. The exact 3D model of the optimized crankshaft with complete design features is the main outcome of this research. The optimization and stress analysis methodology developed in this study can be used in broader fields such as reciprocating compressors/engines, structures, piping, and aerospace industries.
Go to article

Bibliography

[1] Z.P. Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers & Structures, 79(20-21):2009–2027, 2001. doi: 10.1016/S0045-7949(01)00119-5.
[2] A.P. Druschitz, D.C. Fitzgerald, and I. Hoegfeldt. Lightweight crankshafts. SAE Technical Paper 2006-01-0016, 2006. doi: 10.4271/2006-01-0016.
[3] K. Mizoue, Y. Kawahito, and K. Mizogawa. Development of hollow crankshaft. Honda R&D Technical Review 2009, pages 243–245, 2009.
[4] I. Papadimitriou and K. Track. Lightweight potential of crankshafts with hollow design. MTZ Worldwide, 79:42–45, 2018. doi: 10.1007/s38313-017-0140-8.
[5] M. Roeper and S. Reinsch. Hydroforging: a new manufacturing technology for forged lightweight products of aluminum. Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Manufacturing Engineering and Materials Handling, Parts A and B, pages 297-304. Orlando, Florida, USA, November 5–11, 2005. doi: 10.1115/IMECE2005-80424.
[6] J. Lampinen. Cam shape optimization by genetic algorithm. Computer-Aided Design, 35(8):727–737. doi: 10.1016/S0010-4485(03)00004-6.
[7] A. Albers, N. Leon, H. Aguayo, and T. Maier. Multi-objective system optimization of engine crankshafts using an integration approach. Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 14: New Developments in Simulation Methods and Software for Engineering Applications, pages 101–109. Boston, Massachusetts, USA. October 31–November 6, 2008. doi: 10.1115/IMECE2008-67447.
[8] J.P. Henry, J. Topolsky, and M. Abramczuk. Crankshaft durability prediction – a new 3-D approach. SAE Technical Paper 920087, 1992. doi: 10.4271/920087.
[9] M. Guagliano, A. Terranova, and L. Vergani. Theoretical and experimental study of the stress concentration factor in diesel engine crankshafts. Journal of Mechanical Design, 115(1):47–52, 1993. doi: 10.1115/1.2919323.
[10] A.C.C. Borges, L.C. Oliveira, and P.S. Neto. Stress distribution in a crankshaft crank using a geometrically restricted finite element model. SAE Technical Paper 2002-01-2183, 2002. doi: 10.4271/2002-01-2183.
[11] D. Taylor, W. Zhou, A.J. Ciepalowicz, and J. Devlukia. Mixed-mode fatigue from stress concentrations: an approach based on equivalent stress intensity. International Journal of Fatigue, 21(2):173–178, 1999. doi: 10.1016/S0142-1123(98)00066-8.
[12] W. Li, Q. Yan, and J. Xue. Analysis of a crankshaft fatigue failure. Engineering Failure Analysis, 55:13-9-147, 2015. doi: 10.1016/j.engfailanal.2015.05.013.
[13] R.M. Metkar, V.K. Sunnapwar, and S.D. Hiwase. Comparative evaluation of fatigue assessment techniques on a forged steel crankshaft of a single cylinder diesel engine. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, pages 601–609. Houston, Texas, USA, November 9–15, 2012. doi: 10.1115/IMECE2012-85493.
[14] Y. Shi, L. Dong, H.Wang, G. Li, and S. Liu. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission. Frontiers of Mechanical Engineering, 11(3):233–241, 2016. doi: 10.1007/s11465-016-0400-3.
[15] J. Yao and J. Zhang. A modal analysis for vehicle’s crankshaft. 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, pages 300–303, 2017. doi: 10.1109/ITOEC.2017.8122303.
[16] A.S. Mendes, E. Kanpolat, and R. Rauschen. Crankcase and crankshaft coupled structural analysis based on hybrid dynamic simulation. SAE International Journal of Engines, 6(4):2044– 2053, 2013. doi: 10.4271/2013-01-9047.
[17] B. Yu, Q. Feng, and X. Yu. Dynamic simulation and stress analysis for reciprocating compressor crankshaft. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(4):845–851, 2013. doi: 10.1177/0954406212453523.
[18] A. Arshad, S. Samarasinghe, M.A.F. Ameer, and A. Urbahs. A simplified design approach for high-speed wind tunnels. Part I: Table of inclination. Journal of Mechanical Science and Technology, 34(6):2455–2468, 2020. doi: 10.1007/s12206-020-0521-9.
[19] A. Arshad, S. Samarasinghe, and V. Kovalcuks. A simplified design approach for high-speed wind tunnels. Part-I.I: Optimized design of settling chamber and inlet nozzle. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 150–154, 2020. doi: 10.1109/ICMAE50897.2020.9178865.
[20] A. Arshad, M.A.F. Ameer, and O. Kovzels. A simplified design approach for high-speed wind tunnels. Part II: Diffuser optimization and complete duct design. Journal of Mechanical Science and Technology, 35(7):2949–2960, 2021. doi: 10.1007/s12206-021-0618-9.
[21] A. Arshad, N. Andrew, and I. Blumbergs. Computational study of noise reduction in CFM56-5B using core nozzle chevrons. 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 162-167, 2020. doi: 10.1109/ICMAE50897.2020.9178891.
[22] A. Arshad, L.B. Rodrigues, and I.M. López. Design optimization and investigation of aerodynamic characteristics of low Reynolds number airfoils. International Journal of Aeronautical and Space Sciences, 22:751–764, 2021. doi: 10.1007/s42405-021-00362-2.
[23] A. Arshad, A.J. Kallungal and A.E.E.E. Elmenshawy. Stability analysis for a concept design of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV). 2021 International Conference on Military Technologies (ICMT), pages 1–6, 2021. doi: 10.1109/ICMT52455.2021.9502764.
[24] RanTong official database for the ZW-0.8/10-16 reciprocating compressor specifications, online resources.
[25] F. Rodriges Minucci, A.A. dos Santos, and R.A. Lime e Silva. Comparison of multiaxial fatigue criteria to evaluate the life of crankshafts. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 11: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 775–784. Vancouver, British Columbia, Canada. November 12–18, 2010. doi: 10.1115/IMECE2010-39018.
[26] Y.F. Sun, H.B. Qiu, L. Gao, K. Lin, and X.Z. Chu. Stochastic response surface method based on weighted regression and its application to fatigue reliability analysis of crankshaft. Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 13: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems, pages 263-268. Lake Buena Vista, Florida, USA. November 13–19, 2009. doi: 10.1115/IMECE2009-11095.
[27] Y. Gorash, T. Comlekci, and D.MacKenzie. Comparative study of FE-models and material data for fatigue life assessments of welded thin-walled cross-beam connections. Procedia Engineering, 133:420–432, 2015. doi: 10.1016/j.proeng.2015.12.612.
[28] C. Cevik and E. Kanpolat. Achieving optimum crankshaft design – I. SAE Technical Paper 2014-01-0930, 2014. doi: 10.4271/2014-01-0930.
[29] G. Mu, F.Wang, and X. Mi. Optimum design on structural parameters of reciprocating refrigeration compressor crankshaft. Proceedings of the 2016 International Congress on Computation Algorithms in Engineering, pages 281–286, 2016. doi: 10.12783/dtcse/iccae2016/7204.
Go to article

Authors and Affiliations

Ali Arshad
1
ORCID: ORCID
Pengbo Cong
2
Adham Awad Elsayed Elmenshawy
1
Ilmārs Blumbergs
1
ORCID: ORCID

  1. Institute of Aeronautics, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia
  2. Institute of Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Transport and Aeronautics, Riga Technical University, Latvia

This page uses 'cookies'. Learn more