Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the identification problem is considered for initial conditionsin a non-minimal state-space model that includes interpretable state variablesgenerated by non-stationary stochastic processes. In order to solve theidentification problem, structural restrictions are imposed on initial conditionsin a state-space model with redundant state variables. The correspondingrestricted maximum likelihood estimator of initial conditions is derived.The restricted estimator of initial conditions can be used in order tocompute uniquely identified realizations of interpretable latent variables. Theidentification problem is illustrated analytically using a simple structuraleconomic model.

Go to article

Authors and Affiliations

Victor Bystrov
Download PDF Download RIS Download Bibtex

Abstract

A method of solving the inverse kinematics problem for a humanoid robot modeled as a tree-shaped manipulator is presented. Robot trajectory consists of a set of trajectories of the characteristic points (the robot’s center of mass, origins of feet and hands frames) in the discrete time domain. The description of motion in the frame associated with the supporting foot allows one to represent the robot as a composite of several serial open-loop redundant manipulators. Stability during the motion is provided by the trajectory of the robot’s center of mass which ensures that the zero moment point criterion is fulfilled. Inverse kinematics solution is performed offline using the redundancy resolution at the velocity level. The proposed method utilizes robot’s redundancy to fulfill joint position limits and to reduce gravity-related joint torques. The method have been tested in simulations and experiments on a humanoid robot Melson, and results are presented.
Go to article

Bibliography

[1] P. Gupta, V. Tirth, and R.K. Srivastava. Futuristic humanoid robots: An overview. In First International Conference on Industrial and Information Systems, pages 247–254, 2006. doi: 10.1109/ICIIS.2006.365732.
[2] S. Behnke. Humanoid robots – from fiction to reality? KI– Künstliche Intelligenz, 22(4):5–9, 2008.
[3] C.-H. Ting,W.-H Yeo, Y.-J. King, Y.-D. Chuah, J.-V Lee, and W.-B Khaw. Humanoid robot: A review of the architecture, applications and future trend. Research Journal of Applied Sciences, Engineering and Technology, 7:1178–1183, 2014. doi: 10.19026/rjaset.7.402.
[4] R. Mahum, F. Butt, K. Ayyub, S. Islam, M. Nawaz, and D. Abdullah. A review on humanoid robots. International Journal of Advanced and Applied Sciences, 4(2):83–90, 2017. doi: 10.21833/ijaas.2017.02.015.
[5] S. Saeedvand, M. Jafari, H.S. Aghdasi, and J. Baltes. A comprehensive survey on humanoid robot development. The Knowledge Engineering Review, 34:e20, 2019. doi: 10.1017/S0269888919000158.
[6] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and C. Orlowski. The DARPA robotics challenge finals: Results and perspectives. Journal of Field Robotics, 34(2):229–240, 2016. doi: 10.1002/rob.21683.
[7] M. Vukobratovic and B. Borovac. Zero-Moment Point — Thirty Five Years of Its Life. International Journal of Humanoid Robotics, 01(01):157–173, 2004. doi: 10.1142/s0219843604000083.
[8] Ł. Woliński and M. Wojtyra. A novel QP-based kinematic redundancy resolution method with joint constraints satisfaction. IEEE Access, 10:41023–41037, 2022. doi: 10.1109/ACCESS.2022.3167403.
[9] B.W. Satzinger, J.I. Reid, M. Bajracharya, P. Hebert, and K. Byl. More solutions means more problems: Resolving kinematic redundancy in robot locomotion on complex terrain. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4861–4867. IEEE, 2014. doi: 10.1109/iros.2014.6943253.
[10] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000. doi: 10.1109/robot.2000.844730.
[11] B. Siciliano and J.J.E. Slotine. A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, pages 1211–1216, vol. 2, 1991. doi: 10.1109/ICAR.1991.240390.
[12] B. Siciliano, L. Sciavicco, L.Villani, and G. Oriolo. Robotics. Modelling, Planning and Control. Springer-Verlag, Wien, 1 edition, 2009. doi: 10.1007/978-1-84628-642-1.
[13] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer Handbooks. Springer, Berlin, 2 edition, 2016. doi: 10.1007/978-3-540-30301-5.
[14] S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3):398–410, 1997. doi: 10.1109/70.585902.
[15] N. Mansard, O. Khatib, and A. Kheddar. A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3):670–685, 2009. doi: 10.1109/TRO.2009.2020345.
[16] F. Flacco and A. De Luca. A reverse priority approach to multi-task control of redundant robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2421–2427, 2014. doi: 10.1109/IROS.2014.6942891.
[17] A.A. Maciejewski and C.A. Klein. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. The International Journal of Robotics Research, 4(3):109–117, 1985. doi: 10.1177/027836498500400308.
[18] A.S. Deo and I.D.Walker. Minimum effort inverse kinematics for redundant manipulators. IEEE Transactions on Robotics and Automation, 13(5):767–775, 1997. doi: 10.1109/70.631238.
[19] G.S. Chyan and S.G. Ponnambalam. Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robotics and Computer-Integrated Manufacturing, 28(2):147–153, 2011. doi: 10.1016/j.rcim.2011.08.001.
[20] M. Duguleana, F. Grigore Barbuceanu, A. Teirelbar, and G. Mogan. Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robotics and Computer-Integrated Manufacturing, 28(2):132–146, 2011. doi: 0.1016/j.rcim.2011.07.004.
[21] C. Yang, S. Amarjyoti, X. Wang, Z. Li, H. Ma, and C. Y. Su. Visual servoing control of baxter robot arms with obstacle avoidance using kinematic redundancy. In H. Liu, N. Kubota, X. Zhu, R. Dillmann, and D. Zhou, editors, Intelligent Robotics and Applications, pages 568–580. Springer International Publishing, Cham, 2015. doi: 10.1007/978-3-319-22879-2_52.
[22] T. Petric, A. Gams, N. Likar, and L. Žlajpah. Obstacle avoidance with industrial robots. In G. Carbone and F. Gomez-Bravo, editors, Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, pages 113–145. Springer International Publishing, Cham, 2015. doi: 10.1007/978-3-319-14705-5_5.
[23] T. Winiarski, K. Banachowicz, and D. Seredyński. Multi-sensory feedback control in door approaching and opening. In D. Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrożny, editors, Intelligent Systems’2014, pages 57–70, Cham, 2015. Springer International Publishing. doi: 10.1007/978-3-319-11310-4_6.
[24] M. Tanaka and F. Matsuno. Modeling and control of head raising snake robots by using kinematic redundancy. Journal of Intelligent & Robotic Systems, 75(1):53–69, 2013. doi: 10.1007/s10846-013-9866-y.
[25] C. Ye, S. Ma, B. Li, and Y. Wang. Head-raising motion of snake-like robots. In 2004 IEEE International Conference on Robotics and Biomimetics, pages 595–600, 2004. doi: 10.1109/ROBIO.2004.1521847.
[26] J.-A. Claret, G. Venture, and L. Basañez. Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task. International Journal of Social Robotics, 9(2):277–292, 2017. doi: 10.1007/s12369-016-0387-2.
[27] K. Mikołajczyk, M. Szumowski, P. Płoński, and P. Żakieta. Solving inverse kinematics of humanoid robot using a redundant tree-shaped manipulator model. In Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing, ICVISP 2020, NewYork, NY, USA, 2020. Association for Computing Machinery. doi: 10.1145/3448823.3448885.
[28] M. Szumowski, M.S. Żurawska, and T. Zielińska. Preview control applied for humanoid robot motion generation. Archives of Control Sciences, 29(1):111–132, 2019. doi: 10.24425/acs.2019.127526.
[29] M. Szumowski, M.S. Zurawska, and T. Zielinska. Simplified method for humanoid robot gait generation. In T. Uhl, editor, Advances in Mechanism and Machine Science, pages 2269–2278. Springer International Publishing, 2019. doi: 10.1007/978-3-030-20131-9_224.
[30] T. Zielińska, L. Zimin, M. Szumowski, and W. Ge. Motion planning for a humanoid robot with task dependent constraints. In T. Uhl, editor, Advances in Mechanism and Machine Science, pages 1681–1690. Springer International Publishing, Cham, 2019. doi: 10.1007/978-3-030-20131-9_166.
[31] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), volume 2, pages 1620–1626. IEEE, 2003. doi: 10.1109/ROBOT.2003.1241826.
[32] S.R. Buss and J.-S. Kim. Selectively damped least squares for inverse kinematics. J ournal of Graphics Tools, 10(3):37–49, 2005. doi: 10.1080/2151237X.2005.10129202.
[33] A. Ben-Israel and T.N.E. Greville. Generalized Inverses, Theory and Applications. Springer- Verlag New York, 2 edition, 2003. doi: 10.1007/b97366.
[34] P. Falco and C. Natale. On the stability of closed-loop inverse kinematics algorithms for redundant robots. IEEE Transactions on Robotics, 27(4):780–784, 2011. doi: 10.1109/TRO.2011.2135210.
[35] A. Colomé and C. Torras. Closed-loop inverse kinematics for redundant robots: Comparative assessment and two enhancements. IEEE/ASME Transactions on Mechatronics, 20(2):944–955, 2015. doi: 10.1109/TMECH.2014.2326304.
[36] D.N. Nenchev. Redundancy resolution through local optimization: A review. Journal of Robotic Systems, 6(6):769–798, 1989. doi: 10.1002/rob.4620060607.
[37] H. Zghal, R.V. Dubey, and J.A. Euler. Efficient gradient projection optimization for manipulators with multiple degrees of redundancy. In Proceedings., IEEE International Conference on Robotics and Automation, pages 1006–1011, vol. 2, 1990. doi: 10.1109/ROBOT.1990.126123.
[38] A. Liégeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868–871, 1977. doi: 10.1109/TSMC.1977.4309644.
[39] D.-S. Bae and E. Haug. A recursive formulation for constrained mechanical system dynamics: Part I. Open loop systems. Mechanics of Structures and Machines, 15(3):359–382, 1987. doi: 10.1080/08905458708905124.
[40] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator algebra for manipulator modeling and control. The International Journal of Robotics Research, 10(4):371–381, 1991. doi: 10.1177/027836499101000406.
[41] K. Yamane and L. Nakamura. O(N) forward dynamics computation of open kinematic chains based on the principle of virtual work. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume 3, pages 2824–2831, 2001. doi: 10.1109/ROBOT.2001.933050.
[42] Ł. Woliński and P. Malczyk. Dynamic modeling and analysis of a lightweight robotic manipulator in joint space. Archive of Mechanical Engineering, 62(2):279–302, 2015. doi: 10.1515/meceng-2015-0016.
[43] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Wiley, 2005.
[44] B. Espiau and R. Boulic. On the Computation and Control of the Mass Center of Articulated Chains. Technical Report RR-3479, INRIA, August 1998.
[45] D.A.Winter. Biomechanics and Motor Control of Human Movement. JohnWiley & Sons, Inc., 2009. doi: 10.1002/9780470549148.
Go to article

Authors and Affiliations

Kacper Mikołajczyk
1
Maksymilian Szumowski
1
Łukasz Woliński
1
ORCID: ORCID

  1. Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Redundant constraints in MBS models severely deteriorate the computational performance and accuracy of any numerical MBS dynamics simulation method. Classically this problem has been addressed by means of numerical decompositions of the constraint Jacobian within numerical integration steps. Such decompositions are computationally expensive. In this paper an elimination method is discussed that only requires a single numerical decomposition within the model preprocessing step rather than during the time integration. It is based on the determination of motion spaces making use of Lie group concepts. The method is able to reduce the set of loop constraints for a large class of technical systems. In any case it always retains a sufficient number of constraints. It is derived for single kinematic loops.

Go to article

Authors and Affiliations

Andreas Müller
Download PDF Download RIS Download Bibtex

Abstract

In this study we compared chydorid cladoceran (Chydoridae) taxa and assemblages from sediments of 6 Polish and 6 Finnish lakes and investigated if the difference in climate of these two countries can be detected in the cladoceran data. The data were analysed in terms of I) average relative proportions of chydorid taxa during the history of each lake and by 2) redundancy analysis (RDA) to explain the present effect of environmental variables (altitude, area, maximum depth, mean annual temperature, mean summer temperature and length of the growing season) on species abundances. The redundancy analysis (RDA) enabled us to distinguish groups of taxa I) with a high thermal preference 2) associated with small, cold-water lakes and 3) associated with shallow lakes. There are clear differences in the dominant chydorid taxa and in the relative proportions of many other chydorid taxa between the two countries since the end of the last glaciation. Although these differences first of all appear to reflect the climatic difference, the influence of many other environmental factors, controlling the living conditions of particular chydorids have been raised and considered. Further studies with larger data are needed before the role of climate can be reliably separated from other elements of environment.
Go to article

Authors and Affiliations

Kaarina Sarmaja-Korjonen
Krystyna Szeroczyńska
Michał Gąsiorowski
Download PDF Download RIS Download Bibtex

Abstract

Redundancy based methods are proactive scheduling methods for solving the Project

Scheduling Problem (PSP) with non-deterministic activities duration. The fundamental

strategy of these methods is to estimate the activities duration by adding extra time to the

original duration. The extra time allows to consider the risks that may affect the activities

durations and to reduce the number of adjustments to the baseline generated for the project.

In this article, four methods based on redundancies were proposed and compared from two

robustness indicators. These indicators were calculated after running a simulation process.

On the other hand, linear programming was applied as the solution technique to generate

the baselines of 480 projects analyzed. Finally, the results obtained allowed to identify the

most adequate method to solve the PSP with probabilistic activity duration and generate

robust baselines.

Go to article

Authors and Affiliations

Nestor Raul Ortiz-Pimiento
Francisco Javier Diaz-Serna
Download PDF Download RIS Download Bibtex

Abstract

This article takes up the matter of contemporary threats to cities and urbanity, setting the problems cities face today against the background of the two categories of the resilient city and the city developing sustainably. The author describes and presents the evolution of the sustainable development concept as such, as well as the generational change in priorities that has taken place where the development of urbanised areas is concerned, given the way the concept has undergone a certain devaluation, in the light of its failure to achieve fulfi lment. The challenges cities face today require multi-faceted activity, in respect of increased inclusivity, robustness and resilience, and flexibility. This leaves today’s idea of the resilient city embracing old elements of the sustainable city, but also augmenting them in various ways.

Go to article

Authors and Affiliations

Jacek Kwiatkowski
Download PDF Download RIS Download Bibtex

Abstract

Three-level T-type inverters have lower total harmonic distortion in output voltage, higher power density and lower voltage stress of power switches compared with conventional two-level inverters and have been widely used in applications with a wide-power range. Reliability improvement is particularly important for the T-type inverters because of the increased number of power switches and high system complexity. This paper proposes a fault-tolerant topology, which is constructed by adding a redundant leg including halfbridge switches and neutral-point switches connected between the DC bus capacitors and the DC-link midpoint of the conventional T-type inverter. In addition, an after-fault control strategy is proposed based on the results of a fault diagnosis method using bridge voltage. The fault-tolerant control of the open-circuit fault of the power switches and the phase-leg fault can both be achieved by the proposed method. Experimental results are given to verify that the proposed fault-tolerant three-level T-type inverter can output the full voltage level and power during the fault-tolerant operation based on the proposed control strategy.
Go to article

Authors and Affiliations

Danjiang Chen
1
ORCID: ORCID
Liyuan Zheng
1
ORCID: ORCID

  1. College of Information and Intelligence Engineering, Zhejiang Wanli University, No. 8, South Qian Hu Road, Ningbo, Zhejiang, China 315100
Download PDF Download RIS Download Bibtex

Abstract

The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial prestressing forces introduced into the specified redundant members of the structure. The system of constraints covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar system, subjected to all design load combinations at serviceability limit state. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of the redundant members to introduce the initial prestressing forces has been offered for high-order statically indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing forces for considered optimization problems.

Go to article

Authors and Affiliations

Vitalina Yurchenko
Ivan Peleshko
Download PDF Download RIS Download Bibtex

Abstract

In order to investigate the progressive collapse performance of steel open-web sandwich plate structure, the sensitivity index and the importance coefficient of the bars are analyzed by the alternate path method. The condition that the model has perimeter supports with different parameters shows the result that: the redundancy index of structure increases at the structural edge, and the redundancy index will be reduced to changing degrees at the middle structure, when the stiffness of higher ribs increases. The redundancy index has little change, when the stiffness of lower ribs or shear keys increases. The sensitivity index of the shear keys dropped significantly, but the sensitivity index of the higher ribs and lower ribs increase, when the span to depth ratio increases. The sensitivity index of the higher ribs in L1 line increases significantly, when the span to depth ratio declines. So it is advisable to strengthen the higher ribs to avoid excessive sensitivity of ribs, when the span to depth ratio declines.

Go to article

Authors and Affiliations

Weiyi Zeng
Jie Luo
Jianchun Xiao
Download PDF Download RIS Download Bibtex

Abstract

The article describes motion planning of an underwater redundant manipulator with revolute joints moving in a plane under gravity and in the presence of obstacles. The proposed motion planning algorithm is based on minimization of the total energy in overcoming the hydrodynamic as well as dynamic forces acting on the manipulator while moving underwater and at the same time, avoiding both singularities and obstacle. The obstacle is considered as a point object. A recursive Lagrangian dynamics algorithm is formulated for the planar geometry to evaluate joint torques during the motion of serial link redundant manipulator fully submerged underwater. In turn the energy consumed in following a task trajectory is computed. The presence of redundancy in joint space of the manipulator facilitates selecting the optimal sequence of configurations as well as the required joint motion rates with minimum energy consumed among all possible configurations and rates. The effectiveness of the proposed motion planning algorithm is shown by applying it on a 3 degrees-of-freedom planar redundant manipulator fully submerged underwater and avoiding a point obstacle. The results establish that energy spent against overcoming loading resulted from hydrodynamic interactions majorly decides the optimal trajectory to follow in accomplishing an underwater task.
Go to article

Bibliography

[1] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System, 10(2):47–53,1969. doi: 10.1109/TMMS.1969.299896.
[2] Z. Shiller and H-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40,1992. doi: 10.1115/1.2896505.
[3] N. Faiz and S.K. Agrawal.Trajectory planning of robots with dynamics and inequalities. In Proceedings IEEE International Conference on Robotics and Automation, pages 3976–3982, 2000. doi: 10.1109/ROBOT.2000.845351.
[4] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: design for realtime applications. IEEE Transactions on Robotics and Automation, 19(1):42–52, 2003. doi: 10.1109/TRA.2002.807548.
[5] G. Antonelli, S. Chiaverini, and N. Sarkar. External force control for underwater vehiclemanipulator systems. IEEE Transactions on Robotics and Automation, 17(6):931–938, 2001. doi: 10.1109/70.976027.
[6] D. Yoerger and J. Slotine. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4):462–470, 1985. doi: 10.1109/JOE.1985.1145131.
[7] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004. doi: 10.1109/JOE.2004.827837.
[8] N. Sarkar and T.K. Podder. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE Journal of Oceanic Engineering, 26(2):228–239, 2001. doi: 10.1109/48.922789.
[9] J. Yuh. Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6):1475–1483, 1990. doi: 10.1109/21.61218.
[10] B. Lévesque and M.J. Richard. Dynamic analysis of a manipulator in a fluid environment. International Journal of Robotics Research, 13(3):221–231, 1994. doi: 10.1177/027836499401300304.
[11] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley, New York, 1994.
[12] G. Antonelli. Underwater Robots. 2nd ed. Springer, 2006.
[13] T.J. Tarn, G.A. Shoults, and S.P. Yang. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3:269–283, 1996. doi: 10.1007/BF00141159.
[14] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):730–736, 1980. doi: 10.1109/TSMC.1980.4308393.
[15] J.N. Newman. Marine Hydrodynamics. 40th Anniversary Edition. The MIT Press, 2018.
[16] A. Kumar, V. Kumar, and S. Sen. Dynamics of underwater manipulator: a recursive Lagrangian formulation. In R. Kumar, V.S. Chauhan, M. Talha, H. Pathak (Eds.), Machines, Mechanism and Robotics, Lecture Notes in Mechanical Engineering, pages 555–570. Springer, Singapure, 2022. doi: 10.1007/978-981-16-0550-5_56.
[17] A.K. Sharma and S.K. Saha. Simplified drag modeling for the dynamics of an underwater manipulator. IEEE Journal of Ocean Engineering, 46(1):40–55, 2021. doi: 10.1109/JOE.2019.2948412.
[18] R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots using configuration control. Journal of Robotics Systems, 6(6):721–744,1989. doi: 10.1002/rob.4620060605.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Soumen Sen
1
Shibendu Shekhar Roy
2

  1. Robotics and Automation Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
  2. Mechanical Engineering Department, National Institute of Technology, Durgapur, India

This page uses 'cookies'. Learn more