Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2022 | vol. 71 | No 3

Download PDF Download RIS Download Bibtex

Abstract

This paper provides a method for simplified description of a regional power grid model aimed to deliver a grid reduction, and improve grid performance observability. The derived power grid model can be used to analyze the regional allocation of the decentralized energy generation and consumption. The expansion of wind and solar generation in the power system affects the residual load. The power balance between electricity consumption and generation was calculated and analyzed based on the temporal and spatial scales. The proposed grid clustering method is a useful approach for performance analysis in systems with a growing share of renewable generation.
Go to article

Authors and Affiliations

Yang Li
1
ORCID: ORCID
Przemysław Janik
2
ORCID: ORCID
Harald Schwarz
1
Klaus Pfeiffer
1

  1. Brandenburg University of Technology Cottbus-Senftenberg, Department of Energy Distribution and High Voltage Engineering, 03046 Cottbus, Germany
  2. Wrocław University of Science and Technology, Department of Electrical Engineering Fundamentals, 50-377 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the extinction of fossil fuels and high increase in power demand, the necessity for renewable energy power generation has increased globally. Solar PV is one such renewable energy power generation, widely used these days in the power sector. The inverters used for power conversion suffer from power losses in the switching elements. This paper aims at the detailed analysis on switching losses in these inverters and also aims at increasing the efficiency of the inverter by reducing losses. Losses in these power electronic switches vary with their types. In this analysis the most widely used semiconductor switches like the insulated gate bipolar transistor (IGBT) and metal oxide semiconductor field effect transistor (MOSFET) are compared. Also using the sinusoidal pulse width modulation (SPWM) technique, improves the system efficiency considerably. Two SPWM-based singlephase inverters with the IGBT and MOSFET are designed and simulated in a MATLAB Simulink environment. The voltage drop and, thereby, the power loss across the switches are compared and analysed. The proposed technique shows that the SPWM inverter with the IGBT has lower power loss than the SPWM inverter with the MOSFET.
Go to article

Authors and Affiliations

Sivaraj Panneerselvam
1
ORCID: ORCID
Karunanithi Kandasamy
1
ORCID: ORCID
Chandrasekar Perumal
1
ORCID: ORCID

  1. Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

This article provides an optimized solution to the problem of passive shielding against static magnetic fields with any number of spherical shells. It is known, that the shielding factor of a layered structure increases in contrast to a single shell with the same overall thickness. For the reduction of weight and cost by given material parameters and available space the best system for the layer positions has to be found. Because classic magnetically shielded rooms are very heavy, this system will be used to develop a transportable Zero-Gauss-Chamber. To handle this problem, a new way was developed, in which for the first time the solution with regard to shielding and weight was optimized. Therefore, a solution for the most general case of spherical shells was chosen with an adapted boundary condition. This solution was expanded to an arbitrary number of layers and permeabilities. With this analytic solution a differential evolution algorithm is able to find the best partition of the shells. These optimized solutions are verified by numerical solutions made by the Finite Element Method (FEM). After that the solutions of different raw data are determined and investigated.
Go to article

Bibliography

[1] Schiebold K., Zerstörungsfreie Werkstoffprüfung – Magnetpulverprüfung, Springer-Verlag (2015).
[2] Farolfi A., Trypogeorgos D., Colzi G., Fava E., Lamporesi G., Ferrari G., Design and characterization of a compact magnetic shield for ultracold atomic gas experiments, Review of Scientific Instruments, 90.11, 115114 (2019), DOI: 10.48550/arXiv.1907.06457.
[3] Report Buyer Ltd., Degaussing System Market by Solution, End User, Vessel Type and Region – Global Forecast to 2023, June (2018).
[4] Rücker A.W., VII. On the magnetic shielding of concentric spherical shells, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 37.224, pp. 95–130 (1894).
[5] Baum E., Bork J., Systematic design of magnetic shields, Journal of Magnetism and Magnetic materials, 101.1-3, pp. 69–74 (1991).
[6] Clerk Maxwell J., Electricity and magnetism, vol. 2, New York: Dover (1954).
[7] David Jackson J., Classical Electrodynamics, American Association of Physics Teachers (1999).
[8] Karaboga D., Ökdem S., A simple and global optimization algorithm for engineering problems: differential evolution algorithm, Turkish Journal of Electrical Engineering and Computer Sciences, 12.1, pp. 53–60 (2004).
[9] Bronstein I.N., Hromkovic J., Luderer B., Schwarz H.R., Blath J., Schied A., Gottwald S., Taschenbuch der Mathematik, compact disc, Springer-Verlag (2008).
[10] Bartelmann M., Feuerbacher B., Krüger T., Lüst D., Rebhan A., Wipf A., Theoretische Physik 2 |Elektrodynamik, Springer-Verlag (2018).
[11] Rohner M., Magnetisch anhaftende Partikel zuverlässig entfernen, JOT Journal für Oberflächentechnik, 53, pp. 51–53 (2013).
[12] Maurer MagneticAG, Restmagnetismus – das verkannte Problem, JOT Journal für Oberflächentechnik, 57, pp. 104–105 (2017).
[13] Wilson E., Nicholson J.W., On the magnetic shielding of large spaces and its experimental measurement, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, pp. 529–549 (1916).
[14] King L.V., XXI. Electromagnetic shielding at radio frequencies, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 15.97, pp. 201–223 (1933).
[15] Reutov Y.Y., Choice of the number of shells for a spherical magnetostatic shield, Russian Journal of Non-destructive Testing, 37.12, pp. 872–878 (2001).
Go to article

Authors and Affiliations

Patrick Alexander Ralf
1
ORCID: ORCID
Christian Kreischer
1

  1. Helmut Schmidt University, University of the Federal Armed Forced Hamburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

This article presents a new efficient optimization technique namely the Multi- Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multiobjective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods.
Go to article

Authors and Affiliations

Murtadha Al-Kaabi
1
ORCID: ORCID
Jaleel Al Hasheme
2
ORCID: ORCID
Layth Al-Bahrani
3
ORCID: ORCID

  1. Ministry of Education Baghdad, Iraq
  2. University Politehnica of Bucharest, Bucharest, Romania
  3. Al-Mustansiriyah University Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the analysis of the fractal dimension of streamers propagating in mineral oil, under lightning impulse voltage, using the box counting method; the method and technique of calculation are described therein. In the considered experimental conditions, the average velocities of recorded streamers are of 2.4 km/s and 1.8 km/s for positive and negative streamers, respectively; these velocities correspond to the 2nd mode of streamers propagation. It is shown that the streamers present the fractal dimension D ; and the higher D is the bushier are the streamers (i.e. with high branch density). The positive streamers can have higher D than the negative ones, if they are bushier.
Go to article

Bibliography

[1] Abu Shehab W.F., Ali S.A., Alsharari M.I., Lightning protection for power transformers of Aqaba Thermal Power Station, Archives of Electrical Engineering, vol. 69, no. 3, pp. 645–660 (2020), DOI: 10.24425/aee.2020.133923.
[2] Devins J.C., Rzad S.J., Schwabe R.J., Breakdown and pre-breakdown phenomena in liquids, Journal of Applied Physiscs, vol. 52, pp. 4531–4545 (1981), DOI: 10.1063/1.329327.
[3] Beroual A., Tobazeon R., Prebreakdown phenomena in liquid dielectrics, IEEE Transactions on Electrical Insulation, vol. 21, no. 4, pp. 613–627 (1986), DOI: 10.1109/TEI.1986.348967.
[4] Hebner R.E., Measurements of Electrical Breakdown in Liquids, in The Liquid State and its Electrical Properties, vol. B193, Plenum Press (1988).
[5] Badent A., Kist K., Schwabe R.J., Voltage Dependence of Prebreakdown Phenomena in Insulating Oil, Conference Record of the IEEE International Symposium on Electrical Insulation, Pittsburg, PA, USA, pp. 414–417 (1994).
[6] Beroual A., Zahn M., Badent A., Kist K., Schwabe A.J., Yamashita H., Yamazawa K., Danikas M., Chadband W.G., Torshin Y., Propagation and Structure of Streamers in Liquid Dielectrics, IEEE Electrical Insulation Magazine, vol. 14, no. 2, pp. 6–17 (1998), DOI: 10.1109/57.662781.
[7] Lesaint O., Prebreakdown phenomena in liquids: propagation “modes” and basic physical properties, Journal of Physics D-Applied Physics, vol. 49, no. 14, 22 (2016), DOI: 10.1088/0022- 3727/49/14/144001.
[8] Rozga P., Beroual A., Przybylek P., Jaroszewski M., Strzelecki K., A Review on Synthetic Ester Liquids for Transformer Applications, Energies, vol. 13, 6429 (2020), DOI: 10.3390/en13236429.
[9] CIGRE Group TB 856, Dielectric performance on insulating liquids for transformers,WG D1.70 TF3 (2021).
[10] Mandelbrot B.B., Fractals, Form, Chance and Dimension, Freeman, San Francisco, USA (1977), DOI: 10.1016/0012-8252(79)90075-8.
[11] Djemai Z., Beroual A., Fractal Dimension of Discharges Propagation on Insulating Interfaces, Archives of Electrical Engineering, vol. 3, pp. 249–254 (1998).
[12] Boroujeni F.M., Maleki A., Fractal Analysis of Noise Signals of Sampo and John Deere Combine Harvesters in Operational Conditions, Archives of Acoustics, vol. 44, no. 1, pp. 89–98 (2019), DOI: 10.24425/aoa.2019.126355.
[13] Ficker T., Electrostatic discharges and multi-fractal analysis of their Lichtenberg figures, Journal of Physiscs D: Applied Physics, vol. 32, pp. 219–226 (1999).
[14] Sawada Y., Ohta S., Yamazaki M.Y., Honjo H., Self-similarity and a phase transtion-like behaviour of a random growing structure governed by a non-euilibrium parameter, Physics Review A, vol. 26, 3557 (1982), DOI: 10.1103/PhysRevA.26.3557.
[15] Niemeyer L., Pietronero L., Wiesmann H.J., Fractal dimension of dielectric breakdown, Physical Review Letters, vol. 33, pp. 1033–1036 (1984), DOI: 10.1103/PhysRevLett.52.1033.
[16] Wiesmann H.J., Zeller H.R.A., A fractal model of dielectric breakdown and prebreakdown in solid dielectrics, Journal of Applied Physics, vol. 60, pp. 1770–1773 (1986), DOI: 10.1063/1.337219.
[17] Fujimori S., Electric Discharge and Fractals, Japan Journal of Applied Physics, vol. 24, no. 9, pp 1198–1203 (1985).
[18] Kudo K., Fractal analysis of electrical trees, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 5, pp. 713–727 (1998), DOI: 10.1109/94.729694.
[19] Kebbabi L., Beroual A., Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces: Influence of the nature and geometry of solid insulators, Journal of Physics D: Applied Physics, vol. 39, pp. 177–183 (2006), DOI: 10.1088/0022-3727/39/1/026.
[20] Lichtenberg G.C., Nova methodo naturam ac motum fluidi electrici investigandi, Commentatio Prior, Novi Commentarti Soc. Reg. Sc. Gottingensis, vol. 8, pp. 168–180 (1778).
[21] Beroual A., Dang V-H., Fractal analysis of lightning impulse surface discharges propagating over pressboard immersed in mineral and vegetable oils, IEEE Transacions on Dielectrics and Electrical Insulation, vol. 20, pp. 1402–1408 (2013), DOI: 10.1109/TDEI.2013.6571462.
[22] Beroual A., Coulibaly M.-L., Relationship between the Fractal Dimension of Creeping Discharges Propagating at Solid/Gas Interfaces and the Characteristics Parameters of Interfaces, Interanational Review on Electrical Engineering, vol. 9, no. 2, pp. 460–465 (2014).
[23] Rozga P., Influenece of paper insulation on the prebrakdown phenomena in mineral oil under lightning impulse, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 3, pp. 720–727 (2011), DOI: 10.1109/TDEI.2011.5931058.
[24] Rozga P., Jayasree T., Mohan Rao U., Fofana I., Picher P., Prebreakdown and Breakdown Phenomena in Ester Dielectric Liquids, in Alternative Liquids Dielectrics for High Voltage Transformer Insulation Systems: Performance Analysis and Applications, Wiley-IEEE Press, pp. 147–183 (2021), DOI: 10.1002/9781119800194.ch6.
[25] Rozga P., Rapp K.J., Stanek M., Lightning Properties of Selected Insulating Synthetic Esters and Mineral Oil in Point-to-Sphere Electrode System, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, pp. 1699–1705 (2018), DOI: 10.1109/TDEI.2018.007069.
[26] Lundgaard L.E., Linhjell D., Berg G., Streamer/leaders from a metallic particle between parallel plane electrodes in transformer oil, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 8, pp. 1054–1063 (2001), DOI: 10.1109/94.971465.
Go to article

Authors and Affiliations

Viet-Hung Dang
1
ORCID: ORCID
Abderrahmane Beroual
2
ORCID: ORCID
Pawel Rozga
3
ORCID: ORCID

  1. Electric Power University, Vietnam
  2. University of Lyon, Ecole Centrale de Lyon, France
  3. Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Large synchronous generators are of high importance for the stability of power systems. They generate the frequency of the system and stabilize it in case of severe grid faults like trips of large in-feeders or loads. In distributed energy systems, in-feed via inverters will replace this generation in large parts. Modern inverters are capable of supporting grid frequency during severe faults by different means on the one hand. On the other hand, higher Rates of Change of Frequency (RoCoF) after incidents need to be accustomed by future systems. To be able to analyse the RoCoF withstand capability of synchronous or induction generators, suitable models need to be developed. Especially the control and excitation system model need enhancements compared to models proposed in standards like IEEE Std 421.5. This paper elaborates on the necessary modelling depth and validates the approach with example results.
Go to article

Authors and Affiliations

Alf Assenkamp
1

  1. Bureau Veritas CPS Germany GmbH, Germany
Download PDF Download RIS Download Bibtex

Abstract

Suspension line insulators are during their operation subject to static forces and variable loads, usually of a cyclic character. These variable loads have a significant impact on the mechanical durability of composite insulators. A method of providing durability forecast for composite line insulators based on fatigue characteristics has been proposed. The method allows providing durability forecast of insulators in a wide range of variable loadings, i.e. from quasi-static to high amplitude loadings.
Go to article

Authors and Affiliations

Jerzy Bielecki
1
ORCID: ORCID
Jacek Wańkowicz
1
ORCID: ORCID

  1. Institute of Power Engineering – Research Institute, 8 Mory Str., 01-330 Warsaw, Poland

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Manuscript submission:

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.

Template:

Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

The reviewing process:

Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:

a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE

b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place

c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected

d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.

The papers are published on average within 3 months after acceptance.

Requirements for preparation of manuscripts:

The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

Text:

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.

Math:

Please use the MathML editor as well as MathType editor to build an equation in your manuscript.

Equations:

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.

Unit Symbols, Abbreviations:

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."

Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard

Tables, figures (illustrations) and captions:

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.

Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.

Conclusions:

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.

References:

References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.

Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.

You can use the rules presented on the site: IEEE standard.

Examples of the ways in which references should be cited are given below:

Journal manuscript

[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).

example

[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).

[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.

[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.

Conference manuscript

[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).

example

[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).

Book, book chapter and manual

[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).

example

[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).

Patent

[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).

example

[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).

Thesis

[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).

example

[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).

For on electronic forms

[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].

example

[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259

Website

[9] http://www.aee.put.poznan.pl, accessed April 2010.

Proofs:

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.

Fees for printing the papers in Archives of Electrical Engineering:

AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.

The fee for the publication of an article in the AEE journal is 200 Euro.

Abstracting & Indexing:

Archives of Electrical Engineering is covered by the following services:

  • Arianta
  • Baidu Scholar
  • BazTech
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastucture)
  • CNPIEC
  • DOAJ
  • EBSCO - TOC Premie
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Compendex
  • Elsevier - Engineering Village
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • ICI Journals Master List
  • Inspec
  • J-Gate
  • Naviga (Softweco)
  • POL-Index
  • Primo Central (ExLibris)
  • ProQuest - Advanced Technologies Database with Aerospace
  • ProQuest - Electronics and Communications Abstracts
  • ProQuest - Engineering Journals
  • ProQuest - High Tech Research Database
  • ProQuest - Illustrata: Technology
  • ProQuest - SciTech Journals
  • ProQuest - Technology Journals
  • ProQuest - Technology Research Database
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • TEMA Technik und Management
  • Thomson Reuters - Emerging Sources Citation Index
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Preparation of manuscript for Archives of Electrical Engineering (AEE)

AEE License to publish

This page uses 'cookies'. Learn more