Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2022 | Accepted articles |

Download PDF Download RIS Download Bibtex

Abstract

Aluminum and its alloys are one of the most favored metal-based materials for engineering applications that require lightweight materials. On the other hand, composites are getting more preferable for different kinds of applications recently. Boron nitride nanotubes (BNNTs) are one of the excellent reinforcement materials for aluminum and its alloys. To enhance mechanical properties of aluminum, BNNTs can be added with different processes. BNNT reinforced aluminum matrix composites also demonstrate extraordinary radiation shielding properties. This study consists of BNNT reinforced aluminum matrix composite production performed by casting method. Since wetting of BNNT in liquid aluminum is an obstacle for casting, various casting techniques were performed to distribute homogeneously in liquid aluminum. Different methods were investigated in an aim to incorporate BNNT into liquid method as reinforcement. It was found that UTS was increased by 20% and elongation at fracture was increased by 170% when BNNT was preheated at 800°C for 30 minutes.
Go to article

Authors and Affiliations

B. Nemutlu
1
ORCID: ORCID
O. Kahraman
1
ORCID: ORCID
K. B. Demirel
1
ORCID: ORCID
I. Erkul
1
ORCID: ORCID
M. Cicek
1
ORCID: ORCID
H. Sahin
1
ORCID: ORCID
K.C. Dizdar
1
ORCID: ORCID
D. Dispinar
1
ORCID: ORCID

  1. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Thermal energy encounters a huge demand in the world, part of which can be met by renewable energy sources, such as solar energy, and storage of thermal energy surplus from industrial processes. For this purpose, thermal energy storage (TES) units, in which heat is stored, are developed. The energy is accumulated by phase change materials (PCM) characterized by high phase transition enthalpy. PCMs have poor thermal conductivity; therefore, to take full advantage of their capabilities and to accelerate the charging and discharging cycle, metallic structures are used. These structures are manufactured using investment casting technology. Creating models with additive methods, such as 3D printing, allows obtaining complex shapes with high accuracy, such as thin-walled castings. At a large scale, the method may not be cost-effective. In this paper, the heat exchanger models were made from PLA and the castings - from AC44200 aluminum alloy. Investment casting requires the proper selection of parameters, such as the right material for the model, the selection of the firing temperature, the adjustment of the temperature of the molten metal, the temperature of the mold, and the pressure in it. Misaligning any of the parameters can lead to imperfections on the finished casting. Based on the model roughness study, it was found that minor roughness and higher accuracy are presented by the lower parts of the casting, while weaker performance is observed for the upper parts. Metal castings in a salt PCM environment may be subjected to corrosion. Therefore, the authors proposed to produce protective coatings on aluminum castings by the PEO method - plasma electrolytic oxidation. Porous ceramic thin films consisting mainly of alumina were obtained. The next tests will be aimed to confirm whether this layer will not negatively influence the thermal conductivity of the thermal energy storage.
Go to article

Authors and Affiliations

N. M. Raźny
1
ORCID: ORCID

  1. Department of Lightweight Elements Engineering, Foundry and Automation, Wrocław University of Science and Technology, Wyb. Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Go to article

Bibliography

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Go to article

Authors and Affiliations

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hot tearing is a casting defect responsible for external and internal cracks on casting products. This irregular undesired formation is often observed during solidification and freezing. The solidification of molten metal also causes thermal contraction and shrinkage, indicating the occurrence of hot tearing when the alloy is restrained by the mould design. The parameters affecting this process include the pouring and mould temperatures, the chemical composition of the alloy, and the mould shape. Also, the factors affecting hot tearing susceptibility include pouring and mould temperatures, the grain refiner, as well as pouring speed. There are many methods of measuring the level of susceptibility to hot tearing, one of which is the thermal contraction evaluation during metal solidification, observed in cast products through several mould types. This paper discusses the hot tearing overview, the effect of pouring temperature, mould temperature, grain refiner, pouring speed on hot tearing, the type of mould, and criterion for hot tear observation.
Go to article

Bibliography

[1] Li, S. & Apelian, D. (2011). Hot Tearing of aluminum alloy: a critical literature review. International Journal of Metalcasting. 5(1), 23-40.
[2] Kumar, V.M. & Devi, C.N. (2014). Evaluation of mechanical characteristics for aluminum-copper metal matrix composite. Research Journal of Engineering Sciences. 3(3), 1-5.
[3] Briggs, C.W. & Gezelius, R.A. (1934). Studies on solidification and contraction in steel castings II-Free and hindered contraction of cast carbon steel. AFA Trans. 42, 449-476.
[4] Körber, F. & Schitzkowski, G. (1928). Determination of the contraction of cast steel. Stahl Und Eisen. 15, 128-135.
[5] Verö, J. (1936). The hot-shortness of aluminum alloys. The Metals Industry. 48, 431-434.
[6] Pumphrey, W.I. & Jennings, P.H. (1948). A consideration of the nature of brittleness at temperature above the solidus in castings and welds in aluminum alloys. Journal of Institute of Metals. 75, 235.
[7] Pellini, W.S. (1952). Strain theory of hot tearing. Foundry. 80, 125-199.
[8] Rosenberg, R.A. Flemings, M.C. & Taylor, H.F. (1960). Nonferrous binary alloys hot tearing. AFS Transactions. 69, 518-528.
[9] Saveiko, V.N. (1961). Theory of hot tearing. Russian Castings Production. 11, 453-456.
[10] Metz, S.A. & Flemings, M.C. (1970) A fundamental study of hot tearing. AFS Transactions. 78, 453-460.
[11] Clyne, T.W. & Davies, G.J. (1975). A quantitive solidification test for casting and an evaluation of cracking in aluminium-magnesium alloys. The British Foundryman. 68(9), 238-238.
[12] Campbell, J. (1991). Castings. Oxford: Butterworth-Heinemann.
[13] Sigworth, G.K. (1996). Hot tearing of metals. AFS Transactions. 104, 1053-1062.
[14] Davidson, C., Viano, D., Lu, L., & Stjohn, D. (2006). Observation of crack initiation during hot tearing. International Journal of Cast Metals Research. 19, 59-65.
[15] Singer, K., Benek, H. (1931). Contribution to hot tears in steel castings. Stahl and Sisen. 51, 61-65.
[16] Middleton, J.M. & Protheroe, H.T. (1951). The hot-tearing of steel. Journal of the Iron and Steel Institute. 168, 384-397.
[17] Bichler, L., Elsayed, A., Lee, K. & Ravindran, C. (2008). Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. International Journal of Metalcasting. 2(1), 43-54.
[18] Couture, A. & Edwards, J.O. (1996) The hot-tearing of copper-base casting alloys. AFS Transactions, 74, 709-721.
[19] Karunakar, D.B., Rai, R.N., Patra, S. & Datta, G.L. (2009). Effects of grain refinement and residual elements on hot tearing in aluminum castings. The International Journal of Advance Manufacturing Technology. 45, 851-858.
[20] Nasresfahani M.R. & Niroumand, B. (2010). Design of a new hot tearing test apparatus and modification of its operation. Metals and Materials International. 16(1), 35-38.
[21] Burapa, R., Rawangwong, S., Chatthong, J. & Boonchouytan, W. (2013). Effects of mold temperature and casting temperature on hot cracking in Al-4.5 wt.% Cu alloy. Advanced Materials Research. 747, 623-626 doi: 10.4028/www.scientific.net/AMR.747.623.
[22] He, Y., Li, S., Sadayappan, K. & Apelian, D. (2013). Thermomechanical simulation and experimental characterisation of hot tearing during solidification of aluminium alloys. International Journal of Cast Metals Research. 26(2).
[23] Huang, H., Fu, P., Wang, Y., Peng, L. & Jiang, H. (2014). Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Transactions of Nonferrous Metals Society of China. 24(4), 922-929.
[24] Hasan, A. & Suyitno (2015). Effect pouring temperature on casting defect susceptibility of hot tearing in metal alloy Al-Si. Applied Mechanics and Materials. 758, 95-99.
[25] Birru, A.K. & Karunakar, D.B. (2016). Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy. Transactions of Nonferrous Metals Society of China. 26, 1783-1790.
[26] Apelian, D. (2009). Aluminium cast alloys: enabling tools for improved performance. NADCA.
[27] Spittle, J.A. & Cushway, A.A. (1983). Influence of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Metals Technology. 10(1), 6-13.
[28] Limmaneevichitr, C., Saisiang, A. & Chanpum, S. (2002). The role of grain refinement on hot crack susceptibility of aluminum alloy permanent mold castings. Proceedings of the 65th World Foundry Congress.
[29] Sadayappan, M., Sahoo, M. & Weiss, D. (2007). Evaluation of the hot tear susceptibility of selected magnesium casting alloys in permanent molds. AFS Transactions. 115, 761-766.
[30] Fasoyinu, Y., Sahoo, M. & Sikorski, S. (2008). Hot tearing of aluminum alloys 206 and 535 poured in metal mold. Proceedings of the AFS 6th International Conference on Permanent Mold Casting of Aluminum and Magnesium. 11-25.
[31] Zhen, Z., Hort, N., Utke, O., Huang, Y., Petri, N. & Kainer, K.U. (2009). Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method. Magnesium Technology.
[32] Pokorny, M.G., Monroe, C.A. & Beckermann, C. (2009). Prediction of deformation and hot tear formation using a viscoplastic model with damage. The minerals. Metal and Materials Society. 198-198.
[33] Nabawy, A.M. Samuel, A.M., Samuel, F.H. & Doty, H.W. (2012). Influence of additions of Zr, Ti–B, Sr, and Si as well as of mold temperature on the hot-tearing susceptibility of an experimental Al–2% Cu–1% Si alloy. Journal of Materials Science. 47(9), 4146-4158.
[34] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[35] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckkmann, F., Kainer K.U. & Hort, N. (2014). Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. Journal of Materials Science. 49, 353-362.
[36] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & N.Hort. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55.
[37] Easton, M., StJohn, D.H. & Sweet, L. (2009). Grain refinement and hot tearing of aluminium alloys - how to optimise and minimise. Material Science Forum. 630, 213–221. https://doi.org/10.4028/www.scientific.net/msf.630.213.
[38] Elsayed, A., Ravindran, C. & Murty, B.S. (2011). Effect of Al-Ti-B based master alloys on grain refinement and hot tearing susceptibility of AZ91E magnesium alloy. Materials Science Forum. 690, 351–354.
[39] Choi, H., Cho, W., Konishi, H., Kou, S. & Li, X. (2012). Nanoparticle-induced superior hot tearing resistance of A206 alloy. Metallurgical and Materials Transactions A, 44(4), 1897-1907.
[40] Sweet, L., Easton, M.A., Taylor, J.A., Grandfield, J.F., Davidson, C.J., Lu, L., Couper, M.J. & StJohn, D.H. (2012). Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents. Metallurgical and Materials Transactions A. 44(12), 396-5407.
[41] Suyitno, Savran, V.I., Katgerman, L. & Eskin, D.G. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35A, 3551–3561.
[42] Bozorgi, S., Haberl, K., Kneissl, C., Pabel, T. & Schumacher, P. (2011). Effect of alloying elements (magnesium and copper) on hot cracking susceptibility of AlSi7MgCu-Alloys. In Tiryakioğlu, M., Campbell, J., and Crepeau, P.N. (eds.) Shape Casting: The 4th International Symposium. Wiley.
[43] Malau, V., Akhyar, H., , Iswanto, P.T. (2018). Modification of constrained rod casting mold for new hot tearing measurement. 63(3), 1201-1208. DOI 10.24425/123792.
[44] Gowri, S. & Bouchard, M. (1994). Hot cracking in aluminium alloys-part 1. Literature survey. Research Report. Université du Québec à Chicoutimi.
[45] Pekguleryuz, M.O., Li, X., & Aliravci, C.A. (2009). In-situ investigation of hot tearing in aluminum alloy AA1050 via acoustic emission and cooling curve analysis. Metallurgical and Materials Transactions A. 40(6), 1436-1456.
[46] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1990). Evaluation of acoustic emission from issand cast alloy 319 during solidification and formation of casting defects. AFS Transactions. 98, l-7.
[47] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1991). Acoustic emission signal characteristics from casting defects formed during solidification of Al alloy 319. AFS Transactions. 102, 525-530.
[48] Birru, A.K., Karunakar, D.B. & Mahapatra, M.M. (2012). A study on hot tearing susceptibility of Al–Cu, Al–Mg, and Al–Zn alloys. Transactions of the Indian Institute of Metals. 65(1), 97–105.
[49] Singer, A.R.E. & Jennings, P.H. (1946). Hot-shortness of the aluminium-1043 silicon alloys of commercial purity. Journal of Institute of Metals. 72, 197-211.
[50] Gamber, E.J. (1959). Hot cracking test for light metal casting alloys. Trans. AFS. 67, 237-237.
[51] Lemieux, A., Langlais, J. & Chen, X. (2013). Reduction of hot tearing of cast semi-solid 206 alloys. Solid State Phenomena. 193, 101-106.
[52] Novikov, I.I. (1966). Hot shortness of non-ferrous metals and alloys. Moscow, Nauka, 299. (in Russian)
[53] Zych, J., Myszka, M., Snopkiewicz, T. (2017). Hot cracking tendency of non-ferrous alloys - a new test method. W Nauka i Technologia 2017 – Odlewnictwo Metali Nieżelaznych, 199-212. Kraków: Wydawnictwo Naukowe „Akapit”. (in Polish).
[54] Oya, S., Honma, U., Fujii, T. & Othaki, M. (1984). Evaluation of hot tearing in binary Al-Si alloy castings. Aluminium. 60(20), 777.
[55] Warrington, D. & McCartney, D.G. (1989). Development of a new hot-cracking test for aluminum alloys. Cast Metals. 2, 134.
[56] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[57] Cao, G. & Kou, S. (2006). Hot cracking of binary Mg–Al alloy castings. Materials Science and Engineering: A. 417 (1-2), 230-238.
[58] Wannasin, J., Schwam, D., Yurko, J.A., Rohloff, C. & Woycik, G. (2006). Hot tearing susceptibility and fluidity of semi-solid gravity cast Al-Cu alloy. Solid State Phenomena. 116-117, 76-79.
[59] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[60] Guo, J. & Zhu, J.Z. (2007). Prediction of hot tearing during alloy solidification. In the 5th Decennial International Conference on Solidification Processing. Columbia. USA, 549-553.
[61] Kamga, H.K., Larouche, D., Bournane, M. & Rahem, A. (2010). Hot tearing of aluminum–copper B206 alloys with iron and silicon additions. Materials Science and Engineering: A. 527(27-28), 7413-7423.
[62] Cao, G., Zhang, C., Cao, H., Chang, Y.A. & Kou, S. (2010). Hot-tearing susceptibility of ternary Mg-Al-Sr alloy castings. Metallurgical and Materials Transactions A. 41(3), 706-716.
[63] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & Hort, N. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55, https://doi.org/10.1016/j.matdes.2014.07.024.
[64] Bichler, L. & Ravindran, C. (2010). New developments in assessing hot tearing in magnesium alloy castings. Materials and Design. 31, 17-23.
[65] Li, S. (2010). Hot Tearing in cast aluminum alloys: measures and effects of process variables. Worcester Polytechnic Institute. 24-24.
[66] Myszka, M., Zych, J. & Snopkiewicz, T. (2018). Hot cracking tendency of foundry alloys – an innovative testing method. Prace Instytutu Odlewnictwa Transactions of the Foundry Research Institute. 58(4), 235-249. DOI: 10.7356/iod.2018.19.
[67] Monroe, C. & Beckermann, C. (2004). Development of a hot tear indicator for steel castings. In The 58th SFSA Technical and Operating Conference. Chicago, America, 1-13.
[68] Monroe, C. & Beckermann, C. (2005). Development of a hot tear indicator for steel castings. Materials Science and Engineering A. 413-414(3), 30-36.
[69] Monroe, C.A., Beckermann, C. & Klinkhammer, J. (2009). Simulation of deformation and hot tear formation using a visco-plastic model with damage, in book cockcroft, S.L, & Maijer, D.M., eds. modeling of casting, Welding, and Advanced Solidification Processes-XII. TSM (The Minerals, Metals & Materials Society). 313-320.
[70] Nasresfahani, M.R. & Niroumand, B. (2014). A new criterion for prediction of hot tearing susceptibility of cast alloys. Metallurgical and Materials Transactions A. 45(9), 3699-3702.
[71] Nasresfahani, M.R. & Rajabloo, M.J. (2014). Research on the effect of pouring temperature on hot-tear susceptibility of A206 alloy by simulation. Metallurgical and Materials Transactions B. 45(5), 1827-1833.
[72] Li, S., Sadayappan, K. & Apelian, D. (2013). Role of grain refinement in the hot tearing of cast Al-Cu alloy. Metallurgical and Materials Transactions B. 44(3), 614-623.
[73] Olivier, C., Yvan, C. & Michel, B. (2008). Hot tearing in steels during solidification: experimental characterization and thermomechanical modeling. Journal of Engineering Materials and Technology. 130(2), 021018.
[74] Bellet, M., Cerri, O., Bobadilla, M. & Chastel, Y. (2009). Modeling hot tearing during solidification of steels: assessment and improvement of macroscopic criteria through the analysis of two experimental tests. Metallurgical and Materials Transactions A. 40(11), 2705-2717.
[75] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[76] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing susceptibility of binary Mg–Y alloy castings. Materials and Design. 47, 90-100.
[77] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013) Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[78] Liu, Z., Zhang, S., Mao, P. & Wang, F. (2014). Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Transactions of Nonferrous Metals Society of China. 24(4), 907-914.
[79] Akhyar, H. & Husaini (2016). Study on cooling curve behavior during solidification and investigation of impact strength and hardness of recycled Al–Zn aluminum alloy. International Journal of Metalcasting. 10(4), 452-456. https://doi.org/10.1007/s40962-016-0024-8.
[80] Clyne, B. & Davies, G.J. (1981). The influence of composition on solidification cracking susceptibility in binary alloy systems. J. Brit Foundryman. 74, 65-73.
[81] Instone, S. (1999). The effect of alloy composition and microstructure on the hot cracking of vertical direct chill cast aluminium alloy billet. University of Queensland.
[82] Davidson, C., Viano, D., Lu, L., D.H.S. (2005). Shape Casting, 7th International Symposium Celebrating Prof. John Campbell's 80th Birthday.
[83] Mitchell, J.B. Cockcroft, S.L., Viano, D., Davidson, C. & StJohn, D. (2007). Determination of strain during hot tearing by image correlation. Metallurgical and Materials Transactions A. 38(10), 2503-2512.
[84] Easton, M.A., Wang, H., Grandfield, J., Davidson, C.J., StJohn, D.H., Sweet, L.D. & Couper, M.J. (2012). Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys. Metallurgical and Materials Transactions A. 43(9), 3227-3238.
[85] Li, M., Wang, H., Wei, Z. & Zhu, Z. (2010). The effect of Y on the hot-tearing resistance of Al–5 wt.% Cu based alloy. Materials and Design. 31(5), 2483-2487. https://doi.org/10.1016/j.matdes.2009.11.044.
[86] Knuutinen A., Nogita K., Mcdonald S.D. & Dahle A.K. (2001) Modification of Al–Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals. 229-240.
[87] Murashima, I., Asada, J. & Yoshida, M., (2008). Effect of grain refiner and grain size on the susceptibility of Al – Mg die casting alloy to cracking during solidification. Journal of Materials Processing Technology. 209, 210-219.
[88] Xu, R., Zheng, H., Luo, J., Ding, S., Zhang, S. & Tian, X. (2014). Role of tensile forces in hot tearing formation of cast Al-Si alloy. Transactions of Nonferrous Metals Society of China. 24(7), 2203-2207.
[89] Zhang, J. & Singer, R.F. (2004).Effect of grain-boundary characteristics on castability of nickel-base superalloys. Metallurgical and Materials Transactions. A. 35, 939-946.
[90] Zhou, Y., Volek, A. & Singer, R.F. (2005). Influence of solidification conditions on the castability of nickel-base superalloy IN792. Metallurgical and Materials Transactions A. 36, 651-656.
[91] Zhou, Y., Volek, A. & Singer, R.F. (2006). Effect of grain boundary characteristics on hot tearing in directional solidification of superalloys. Journal of Materials Research. 21(09), 2361-2370.
[92] Zhou, Y. & Volek, A. (2008). Effect of carbon additions on hot tearing of a second generation nickel-base superalloy. Materials Science and Engineering: A. 479(1-2), 324-332.
[93] Phillion, A.B., Hamilton, R.W., Fuloria, D., Leung, A.C.L., Rockett, P., Connolley, T. & Lee, P.D. (2011). In situ X-ray observation of semi-solid deformation and failure in Al–Cu alloys. Acta Materialia. 59, 1436-1444.
[94] Akhyar, H., Malau, V., Suyitno & Iswanto, P.T. (2017). Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. Results in Physics. 7, 1030-1039. https://doi.org/10.1016/j.rinp.2017.02.041.
[95] Clyne, G.J. & Davies, T.W. (1979). Solidification and Casting of Metals. London: Metals Society. 275-278.
[96] Suyitno, Kool, W. H., Katgerman, L., (2005). Hot Tearing Criteria Evaluation for Direct-Chill Casting of an Al-4.5 Pct Cu Alloy. Metallurgical and Materials Transactions A. 36A, 1537-1546.
[97] Katgerman, L. (1982). A mathematical model for hot cracking of aluminum alloys during D.C. casting. JOM Journal of the Minerals Metals & Materials Society. 34, 46-49. https://doi.org/10.1007/BF03339110.
[98] Magnin, B., Maenner, L., Katgerman, L. & Engler, S. (1996). Ductility and theology of an Al-4.5%Cu alloy from room temperature to coherency temperature. Mater Science Forum. 1209, 217-222.
[99] Eskin, D.G., Suyitno & Katgerman, L. (2004). Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Progress in Materials Science. 49, 629-711.
[100] Prokhorov, N.N. (1962). Resistance to hot tearing of cast metals during solidification. Russian Castings Production. 2, 172-175.
[101] Rappaz, M., Drezet, J.M. & Gremaud, M. (1999). A new hot-tearing criterion. Metallurgical and Materials Transactions A. 30A, 449-455.
[102] Braccini, M., Martin, C. L., Suéry, M. & Bréchet, Y. (2000). Modeling of casting. Welding and Advanced Solidification Processes IX. 18-24.
[103] Eskin, D.G. & Katgerman, L. (2007). A quest for a new hot tearing criterion. Metallurgical and Materials Transactions A. 38A, 1511- 1519, DOI: 10.1007/s11661-007-9169-7.
[104] Hamdi, M.M., Mo, A. & Fjær, H.G. (2006). TearSim : A two-phase model addressing hot tearing formation during aluminum direct chill casting. Metallurgical and Materials Transactions A. 37, 3069-3083.
[105] Monroe, C. & Beckermann, C. (2014). Prediction of hot tearing using a dimensionless niyama criterion. The Journal of The Minerals. 66(8), 1439-1445.
[106] Aguiar, A.M. (2020). Hot tearing susceptibility of single-phase Al-3.8 wt%Zn-1 wt%Mg alloy using the constrained rod solidification experiment: influence of 1.2 wt%Fe addition and grain refinement. Thesis, McMaster University. Hamilton, Ontario.

Go to article

Authors and Affiliations

Akhyar
1

  1. Department of Mechanical Engineering, Univeritas Syiah Kuala, Jl. Syech Aburrauf No.7, Darussalam, Banda Aceh, 23111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the abrasion resistance of cast iron with vermicular graphite in the as-cast state and after austempering (the latter material is referred to as AVGI – Austempered Vermicular Graphite Iron). Austenitization was carried out at the temperature values of either 900°C or 960°C, and austempering at the temperature values of either 290°C and or 390°C. Both the austenitization and the austempering time was equal to 90 minutes. The change of the pearlitic-ferritic matrix to the ausferritic one resulted in an increase in mechanical properties. Abrasion tests were conducted by means of the T-01M pin-on-disc tribometer. The counter-sample (i.e. the disc) was made of the JT6500 friction material. Each sample was subject to abrasion over a sliding distance of 4000 m. The weight losses of both samples and counter-samples were determined by the gravimetric method. It was found that the vermicular cast iron austenitized at 900°C and austempered at 290°C was characterized by the lowest wear among the evaluated cast iron types. The geometric structure of the surface layer after the dry friction test exhibited irregular noticeable grooves, distinct oriented abrasion traces, plastic flow of the material, microcracks, and pits generated by tearing out the abraded material. The largest surface roughness was found for the AVGI cast iron heat-treated according to the variant 3 (Tγ =900 ºC; Tpi = 390°C), while the smallest one occurred in AVGI cast iron subject to either the variant 2 (Tγ =960 ºC; Tpi = 290°C) or the variant 4 (Tγ =900 ºC; Tpi = 290°C) of heat treatment and was equal to either 2.5 μm or 2.66 μm, respectively. It can be seen that the surface roughness decreases with the decrease in the austempering temperature.
Go to article

Bibliography

[1] Hebda, M., Wachal, A. (1980). Tribology. Warsaw: Ed. Scientific and Technical Publishers.
[2] Hebda, M. (2007). Processes of friction, lubrication and wear of machines. Warsaw – Radom: Ed. Institute of Sustainable Technologies - PIB.
[3] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 1 and 2. Krakow: Ed. ZG STOP. (in Polish).
[4] Kopyciński, D., Kawalec, M., et al. (2013). Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides. Archives of Metallurgy and Materials. 58(3), 973-976.
[5] Szajnar, J., Walasek, A. & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936.
[6] Kovac, P., Jesic, D., Sovilj-Nikic, S., et al. (2018). Energy aspects of tribological behaviour of nodular cast iron. Journal of Environmental Protection and Ecology. 19(1), 163-172.
[7] Cabanne, P., Forrest, R., Roedter, H. (2006). Sorelmetal about nodular cast iron. Warsaw: Metals & Minerals Ltd.
[8] Gumienny, G. (2013). Effect of carbides and matrix type on wear resistance of nodular cast iron. Archives of Foundry Engineering. 13(3), 25-29.
[9] Jeyaprakash, N., Sivasankaran, S., Prabu G., Yang, Che-Hua, & Alaboodi Abdulaziz S. (2019). Enhancing the tribological properties of nodular cast iron using multi wall carbon nano-tubes (MWCNTs) as lubricant additives. Materials Research Express. 6(4). DOI: https://doi.org/10.1088/2053-1591/aafce9
[10] Wojciechowski A., Sobczak J. (2001) Composite brake discs for road vehicles. Warsaw: Motor Transport Institute.
[11] Guzik, E. (2001). Cast iron refining processes. Selected Issues. Archive of Foundry. Monograph No. 1M, 2001. Ed. PAN.
[12] Duenas, J.R., Hormaza, W. & CastroGüiza, G.M. (2019). Abrasion resistance and toughness of a ductile ironproduced by two molding processes with a shortaustempering. Journal of Materials Research and Technology. 8(3), 2605-2612.
[13] Han, J.M., Zou, Q., Barber, G.C. & et al. (2012). Study of the effects of austempering temperature and time on scuffing behavior of austempered Ni–Mo–Cu ductile iron. Wear. 290-291, 99-105
[14] Du, Y., Gao, X., Wang, X. & et al. (2020). Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures. Wear. 456-457(203396), 1-12. DOI: 10.1016/j.wear.2020.203396
[15] Kochański, A., Krzyńska, A., Chmielewski, T. & Stoliński, A. (2015). Comparison of austempered ductile iron and manganese steel wearability. Archives of Foundry Engineering. 15(spec.1), 51-54.
[16] Myszka, D. (2005). Microstructure and surface properties of ADI cast iron. Archives of Foundry. 5(15), 278-283.
[17] Kumari, R., Rao, P. (2009). Study od’s wear behaviour of austempered ductile iron. Journal of Materials Research. 44, 1082-1093.
[18] Medyński, D. & Janus, A. (2018). Abrasive – wear resistance of austenitic cast iron. Archives of Foundry Engineering. 18(3), 43-48.
[19] Pytel, A. & Gazda, A. (2014). Evaluation of selected properties in austempered vermicular cast iron (AVCI). Works of the Foundry Research Institute. LIV(4), 23-31.
[20] Panneerselvama, S., Martis, C.J., Putatunda, S. K. & Boileau, J. M. (2015). An investigation on the stability of austenite in Austempered Ductile Cast Iron (ADI). Materials Science and Engineering: A. 625, 237-246.
[21] Kim, Y., Shin, H., Park, H. & Lim, J. (2008). Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperaturę. Materials Letters. 62(3), 357-360.
[22] Krzyńska, A. (2013). Searching for better properties of ADI. Archives of Foundry Engineering. 13(spec.1), 91-96.
[23] Krzyńska, A. & Kochański, A. (2014). Austenitization of Ferritic Ductil Iron. Archives of Foundry Engineering. 14(4), 49-54.
[24] Wilk-Kołodziejczyk, D., Mrzygłód, B., Regulski, K. & et al. (2016). Influence of process parameters on the properties of austempered ductile iron (ADI) examined with the use of data mining methods. Metalurgija. 55(4), 849-851.
[25] Khalaj, G., Pouraliakbary, H., Mamaghaniz, K. R. & et al. (2013). Modeling the correlation between heat treatment, chemical composition and bainite fraction of pipeline steels by means of artifcial neural networks. Neural Network World. 23, 351-367.
[26] Kiahosseini, S. R., Baygi, S., J., M., Khalaj, G. & et al. (2017). a study on structural, corrosion, and sensitization behavior of ultrafine and coarse grain 316 stainless steel processed by multiaxial forging and heat treatment. Journal of Materials Engineering and Performance. 27, 271-281.
[27] Polish Standard PN-EN 1563, Founding. Spheroidal graphite cast iron, (2000).
[28] Polish Standard PN-EN ISO 945-1: Microstructure of cast irons. Part 1. Graphite classification by visual analysis. November 2009. Correction PN-EN ISO 945-1:2009/AC. April 2010.
[29] Polish Standard PN-75/H-04661: Grey cast iron, nodular cast iron and malleable. Metallographic examinations. Determining of microstructure.
[30] Soiński, M.S., Jakubus, A. (2014). Initial assessment of abrasive wear resistance of austempered cast iron with vermicular graphite. Archives of Metallurgy and Materials. 59(3), 1073-1076.
[31] Kaczorowski, M. (2001). Structure and mechanical properties of ADI cast iron. Archive of Foundry. 1(1/2), 149-158.
[32] Myszka, D., Kaczorowski, M., Tybulczuk, J. & Kowalski, A. (2004). Parameters of the ADI cast iron production process and its mechanical properties. Archive of Foundry. 4(11), 355-364.
[33] Binczyk F., Gradoń P. (2010). Influence of heat treatment parameters on the formation of ADI cast iron microstructure. The work of IMŻ. 4, 5-14.
[34] Pietrowski, S. (1997). Ductile iron with the structure of bainitic ferrite with austenite or bainitic ferrite. Archives of Materials Science. 18, 253-273.
[35] Borowski, A.W. (1998). Synthetic ductile iron quenched with isothermal transformation (ADI). XXIII Scientific and Technical Symposium of the Foundry Engineering ITMat. Warsaw University of Technology, pp. 29.
[36] Wróbel, J. (2013). Cast iron thermal fatigue resistance ADI. Crakow: PhD thesis. AGH.
[37] Mierzwa, P. (2010). The effect of thermal treatment on the selected properties of cast iron with vermicular graphite. Doctoral thesis. Czestochowa University of Technology.
[38] Institute of Sustainable Technologies. User manual. Tribology set T-01M, mandrel-disc type. State Research Institute. Radom 2010.
[39] makland.com.pl. 28.02.2016, time 13.25.

Go to article

Authors and Affiliations

A. Jakubus
1
ORCID: ORCID

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The European Commission's ambitious plan to reduce CO2 emissions has a significant impact on the global automotive industry. Recent development of new diesel and petrol engines with direct injection is aimed at improving fuel efficiency while maintaining (or enhancing) engine performance. This naturally also increases the demands on the properties of the most stressed engine components (e.g., cylinder heads, engine blocks, pistons), which leads to the development of new materials. Presented work analysed the effect of different mold temperatures (60; 120; 180 °C) on mechanical, physical properties and microstructure of AlSi5Cu2Mg aluminium alloy. This alloy is currently being used for the production of cylinder head castings. The results showed that the changing mold temperature had an effect on mechanical properties (ultimate tensile strength and Young modulus values). SEM with EDX analysis of intermetallic phases revealed there were no size and morphology changes of Cu, Mg and Fe intermetallic phases when the mold temperature changed. No significant effect of different mold temperature on physical properties (thermal and electrical conductivity) and fracture mechanism occurred during experiment. Optimal combination of mechanical and physical properties of AlSi5Cu2Mg alloy was achieved using a permanent mold with temperature ranging from 120 to 180 °C.
Go to article

Bibliography

[1] Skrabulakova, E.F, Ivanova, M., Rosova, A., Gresova, E., Sofranko, M. & Ferencz, V. (2021). On electromobility development and the calculation of the infrastructural country electromobility coefficient. Processes. 9(2), 1-28. DOI: 10.3390/pr9020222.
[2] Murthy, V. & Girish, K. (2021). A comprehensive review of battery technology for E-mobility. Journal of the Indian chemical society. 98(10), 100173 DOI: 10.1016/j.jics.2021.100173.
[3] Trovao, J. (2021). Electromobility innovation trends [automotive electronics]. IEEE vehicular technology magazine. 16(3), 153-161. DOI: 10.1109/MVT.2021.3091798.
[4] Venticinque, S., Martino, B., Aversa, R., Natvig, M., Jiang, S. & Sard, R. (2021). Evaluation of innovative solutions for e-mobility. International journal of grid and utility computing. 12(2), 159-172. DOI: 10.1504/IJGUC.2021.114829.
[5] Hajdúch, P., Djurdjevic, M. B. & Bolibruchová, D. (2020). New trends in the production of aluminum castings for the automotive industry. Slévarenství. 1-2, 5-7.
[6] Hoag, K. & Dondlinger, B. (2016). Cylinder block and head materials and manufacturing. In Kevin Hoag & Brian Dondlinger (Eds.), Vehicular engine design (pp. 97-115). Springer, Vienna. DOI: 10.1007/978-3-7091-1859-77.
[7] Kores, S., Zak, H. & Tonn, B. (2008). Aluminium alloys for cylinder heads. Materials and Geoenvironment. 55, 307-317.
[8] Podprocká, R. & Bolibruchová, D. (2017). Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese. Archives of Foundry Engineering. 17(3), 217-221. DOI: 10.1515/afe-2017-0118.
[9] Vincze, F., Tokár, M., Gegyverneki, G. & Gyarmati, G. (2020). Examination of the eutectic modifying effect of Sr on an Al-Si-Mg-Cu alloy using various technological parameters. Archives of Foundry Engineering. 20(3), 79-84. 10.24425/afe.2020.133334
[10] Djurdjevič, M.B., Vicario, I. & Huber, G. (2014). Review of thermal analysis applications in aluminium casting plants. Revista de Metalurgia. 50(1), 1-12. DOI: 10.3989/revmetalm.004
[11] Canales, A., Silva, J., Gloria, D. & Colar, R. (2010). Thermal analysis during solidification of cast Al-Si alloys. Thermochimica Acta. 510(1-2), 82-87. DOI: 10.1016/j.tca.2010.06.026.
[12] Tillová, E., Chalupová, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS – vydavateľstvo ŽU.

Go to article

Authors and Affiliations

L. Širanec
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
M. Chalupová
1
ORCID: ORCID

  1. Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The method of the ongoing assessment of the reclaim quality originating from the mechanical reclamation is described in this paper. In the process, the triboelectric system of measuring amounts of dust in the dedusting part of a reclamation device was applied. Based on the online measurements of the amounts of dust generated in the spent sand-reclamation process and the post-process determinations of the ignition losses and granular structures of the removed dust, the proper work parameters of the experimental reclaimer were selected. The allowable value of the ignition losses as well as the main fraction of the reclaimed matrix being similar to fresh sand was assumed as the main criteria of the positive assessment of the process. Within the presented investigations, a periodically operating device for rotor-mechanical reclamation was developed. The possibility of changing the intensity and time of the reclamation treatment as well as the triboelectric system of the dust-amount measuring were applied in this device. Tests were performed for the spent moulding sand with phenol-resol resin Carbophen 5692 hardened by CO2. This sand represents the moulding sand group with a less harmful influence on the surroundings for which the recovery of the quartz matrix utilising the reclamation requires stricter control of the parameters of the reclamation process and reclaim quality.
Go to article

Bibliography

[1] Boenisch, D. (1991, March). Reclamation of spent sands containing bentonite. Guidelines for an economical leading to minimized waste. Giesserei 77, nr 19, 1990. In and AFS International Sand Reclamation Conference, Conference Proceedings, Novi/MI (p. 211).
[2] Dańko, J., Dańko, R., Łucarz, M. (2007). Processes and devices for the matrix regeneration of spent molding sands. Akapit. 291. (in Polish).
[3] Dańko, R. (2007). Development of energetic model for dry mechanical reclamation process of used foundry sands. International Journal of Cast Metals Research. 20(4), 228-232.
[4] Dańko, R. (2012). Strength model of self-setting moulding sands with synthetic resins in an aspect of the of the integrated matrix recycling process. Gliwice: Archives of Foundry Engineering.
[5] Łucarz, M. & Dereń, M. (2017). Conditions of thermal reclamation process realization on a sample of spent moulding sand from an aluminum alloy foundry plant. Archives of Foundry Engineering. 17(2), 197-201.
[6] Leidel, D. S. (1993). Low temperature sand reclamation for dramatically improved quality and reduced cost. Transactions-Japan Foundrymen’s Society. 12, 1-1.
[7] Lewandowski, L. (1997). Materials for foundry molds. Akapit. (in Polish).
[8] Siddique, R., Kaur, G. & Rajor, A. (2010). Waste foundry sand and its leachate characteristics. Resources, Conservation and Recycling. 54(12), 1027-1036.
[9] Svidro, J.T. (2010). The effect of sulphur content in chemical bonded sand moulds on the mechanism of penetration. International Foundry Research. 62(4), 32-41.
[10] Polzin, H., Nitsch, U., Tilch, W. & Flemming, E. (1997). Regenerierung anorganisch gebundener Altsande mit einer mechanisch arbeitender Pilotanlage. Giesserei-Praxis. 23, 500-507.
[11] Vijayakumar, S., Srinivasan, M.V. & Govindaraju, M. (2021). Reduction of waste in furan molding process from cast iron foundry. Materials Today: Proceedings. 46, 5032-5035.
[12] Wang, J.N. & Fan, Z.T. (2010). 'Freezing–mechanical'reclamation of used sodium silicate sands. International Journal of Cast Metals Research. 23(5), 257-263.
[13] Wang, L.C., Jiang, W.M., Gong, X.L., Liu, F.C. & Fan, Z.T. (2019). Recycling water glass from wet reclamation sewage of waste sodium silicate-bonded sand. China Foundry. 16(3), 198-203.
[14] Cruz, N., Briens, C. & Berruti, F. (2009). Green sand reclamation using a fluidized bed with an attrition nozzle. Resources, Conservation and Recycling. 54(1), 45-52.
[15] Dungan, R.S., Huwe, J. & Chaney, R.L. (2009). Concentrations of PCDD/PCDFs and PCBs in spent foundry sands. Chemosphere. 75(9), 1232-1235.
[16] Zitian, F., Fuchu, L., Wei, L. & Guona, L. (2014). A new low-cost method of reclaiming mixed foundry waste sand based on wet-thermal composite reclamation. China Foundry. 11(5).
[17] Ghormley, S., Williams, R. & Dvorak, B. (2020). Foundry Sand Source Reduction Options: Life Cycle Assessment Evaluation. Environments. 7(9), 66.
[18] Holtzer, M. & Kmita, A. (2020). Mold and Core Sands in Metalcasting: Chemistry and Ecology. Sustainable Development. Springer, Cham.

Go to article

Authors and Affiliations

R. Dańko
1
A. Pietrzak
1
D. Gruszka
1

  1. AGH University of Science and Technology, Department of Foundry, ul. Reymonta 23, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of plasticity of moulding sands with binders obtained by measuring deflection angles in the single point bend test in dependence on their hardening degree are presented in the hereby paper. Shaped samples made of moulding sands obtained in the technology with urea-furfuryl resin Furanol FR75A and in the technology with water glass, were subjected to various tests. Shaped samples were made on the quartz matrix of a medium grains size ����=0,29 ����. Investigations were performed for the resin content being 1% and 2%, at a constant proportion of a hardener versus resin -- equal 60%. In the case of sands from the technology with water glass, investigations were performed for 3.5% of water glass versus sand matrix and 0.35% of Flodur. Plasticity tests were carried out with using the strength machine with a continuous recording of a sample deflection value. Measurements of deflection angles values in the bend test were performed on a series of simultaneously made samples at constant time intervals from the moment of their making. To determine the sand hardening degree the ultrasound technique was applied, according to the previously developed methodology [1]. Every time from the obtained results the characteristic of the growing stress as a function of deflection was prepared (��). In addition, for the tested group of moulding sands, empirical relationships between the maximum deflection angle (αmax) in the bend test and the hardening degree were determined (Sx): α = f(Sx).
Go to article

Bibliography

[1] Zych, J. (2002). New, nondestructive method of quality inspection of mould’s elements made of moulding sands with chemical binders. Archives of Foundry. 2(5), 132-139.
[2] Fredrickson, A.G. (1964). Principles and applications of rheology. New York: Prentice Hall, Englewood Cliffs.
[3] Reiner M. (1958). Theoretical rheology. Warszawa: PWN. (in Polish).
[4] Kembłowski, Z. (1973). Rheometry of non-Newtonian fluids. Warszawa: WNT. (in Polish).
[5] Malkin, A. JU. (1994). Rheology Fundamentals. ChemTec Publishing. Canada.
[6] Barnes, H.A. (1997). Thixotropy-a review. Journal of Non-Newtonian Fluid Mechanics. 70(1-2), 1-33.
[7] Gröning, P. (2014). Properties and use of the modern PUR cold-box system. 4th Conference: Molding and core materials - theory and practice. 28 -30 August. Iława – Poland: Hüttenes-Albertus Poland. (in Polish).
[8] Gröning, P., Schreckenberg, S. & Jenrich, K. (2015). Herstellung von hoch-komplexen Zylinderkurbel-gehäusen. Giesserei. 102(01), 42-47.
[9] Grabarczyk, A., Dobosz, M.St., Kusiński, J., & Major-Gabryś, K. (2018). The tendency of moulding sands to generate core cracs. Archives of Foundry Engineering. 18(1), 157-161.
[10] Dobosz, M.St., Grabarczyk, A. & Major-Gabryś, K. (2017). Elasticity of moulding sands – a method of reducing core cracking. Archives of Foundry Engineering. 17(1), 31-36.
[11] Grabarczyk, A. (2018). Analysis and evaluation of mechanical and thermal deformation of molding sands with selected binders. Unpublished doctoral dissertation, AGH University of Science and Technology, Kraków. (in Polish).
[12] Zych, J. (2007). Synthesis of ultrasonic technique applications in the analysis of the kinetics of selected processes in molding materials. Kraków: AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163. (in Polish).

Go to article

Authors and Affiliations

N. Matonis
1
ORCID: ORCID
J. Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, ul. Reymonta 23, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Iron aluminides are iron-aluminum alloys that have excellent resistance to oxidation at high temperatures with low density, high resistance/weight ratio and a low manufacturing cost. Due to its characteristics, these alloys are presented as an option to replace stainless steels in certain applications. This works intends report the casting process and subsequent analyses involving microstructure, mechanical properties, and corrosion resistance of two Fe-Al-C alloys (Fe-11wt%Al and Fe-25wt%Al, containing 0.31-0.37%C), which were prepared in an induction furnace and poured in a permanent mold. Samples of these alloys were characterized and presented elevated hardness values of 37 HRC (alloy Fe-11wt%Al) and 49.6HRC (alloy Fe-25wt%Al) and microstructure with aluminides type Fe3Al and FeAl and also carbides type K. The Fe-11wt%Al alloy exhibited superior resistance to uniform corrosion, although both Fe-Al-C alloys exhibited significantly higher corrosion rates compared to a binary iron aluminide in 0.5M H2SO4 containing naturally dissolved oxygen.
Go to article

Bibliography

[1] Zamanzade, M., Barnoush, A. & Motz, C. (2016). A review on the properties of iron aluminide intermetallics. Crystals. 6(10), 1-29. DOI: 10.3390/cryst6010010.
[2] Stoloff, N.S. (1998). Iron aluminides: present status and future prospects. Materials Science and Engineering: A. 258(1-2), 1-14. DOI: 10.1016/S0921-5093(98)00909-5.
[3] Cinca, N., Lima, C.R.C. & Guilemany, J.M. (2013). An overview of intermetallics research and application: Status of thermal spray coatings. Journal of Materials Research and Technology. 2(1), 75-86. DOI: 10.1016/j.jmrt.2013.03.013.
[4] Palm, M., Stein, F. & Dehm, G. (2019). Iron Aluminides. Annual Review of Materials Research. 49, 297-326. DOI: 10.1146/annurev-matsci-070218-125911.
[5] Deevi, S.C. & Sikka, V.K. (1996). Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics. 4(5) 357-375. DOI: 10.1016/0966-9795(95)00056-9.
[6] Shankar Rao, V., Baligidad, R. G. & Raja, V. S. (2002). Effect of carbon on corrosion behaviour of Fe3Al intermetallics in 0.5N sulphuric acid. Corrosion Science. 44, 521-533. DOI: 10.1016/S0010-938X(01)00084-1.
[7] Shankar Rao, V. (2005). Repassivation behaviour and surface analysis of Fe3Al based iron aluminide in 0.25M H2SO4. Corrosion Science. 47, 183-194. DOI: 10.1016/j.corsci.2004.05.014.
[8] Nigam, A.K., Balasubramaniam, R., Bhargava, S. & Baligidad, R.G. (2006). Electrochemical impedance spectroscopy and cyclic voltammetry study of carbon-alloyed iron aluminides in sulfuric acid. Corrosion Science. 48(7), 1666-1678. DOI: 10.1016/j.corsci.2010.05.006.
[9] Schneider, A., Falat, L., Sauthoff, G. & Frommeyer, G. (2005). Microstructures and mechanical properties of Fe3Al-based Fe-Al-C alloys. Intermetallics. 13(12), 1322-1331. DOI: 10.1016/j.intermet.2005.01.0.
[10] Brito, P., Pinto, H., Klaus, M., Genzel, C. & Kaysser-Pyzalla, A. (2010). Internal stresses and textures of nanostructured alumina scales growing on polycrystalline Fe3Al alloy. Powder Diffraction. 25(2), 114-118. DOI: 10.1154/1.3402764
[11] Brito, P., Schuller, E., Silva, J., Campos, T.R., Araújo, C.R. & Carneiro, J.R. (2017). Electrochemical corrosion behaviour of (100), (110) and (111) Fe3Al single crystals in sulphuric acid. Corrosion Science. 126, 366-373. DOI: 10.1016/j.corsci.2017.05.029.
[12] Brito, P.P., Carvalho Filho, C.T. & Oliveira, G.A. (2020). Electrochemical corrosion behavior of iron aluminides in sulfuric acid. Materials Science Forum. 1012, 395-400. DOI: 10.4028/www.scientific.net/MSF.1012.395.
[13] Hernández-Hernández, M., Liu, H. B., Alvarez-Ramirez, J. & Espinosa-Medina, M. A. (2017). Corrosion behavior of Fe-40at.%Al-Based intermetallic in 0.25M H2SO4 solution. Journal of Materials Engineering and Performance. 26, 5983-5996. DOI: 10.1007/s11665-017-3036-5.

Go to article

Authors and Affiliations

A.P. Silva
1
ORCID: ORCID
P.P. Brito
1
N. Martins
1

  1. PUC Minas, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to determine the effect of the primary quality of reclaim from dry mechanical reclamation on the strength properties and service life of moulding sands based on this reclaim. Another aim was to establish the effect of the quality of reclaim, sulphur content - in particular, on the surface quality and thickness of the deformed surface layer in ductile iron castings. The research has revealed differences in the strength parameters and service life (mouldability) of sands based on the tested reclaims, depending on the type of the furfuryl resin used, including resins whose synthesis was done as part of the Żywfur project. Examinations of the structure of the surface layer of test castings poured in moulds made of loose self-hardening sands containing the addition of reclaim have confirmed the occurrence of degenerated spheroidal graphite in this part of the casting. It should be noted here that when massive castings with a long solidification time are made, the graphite degeneration effect can be more visible and the layer with the changed structure can increase in thickness. The research has clearly shown that it is necessary to control the parameters of the reclaim, including sulphur content which is transferred from the hardener and accumulates on the grains. This phenomenon has a negative impact not only on the sand strength and technological properties but also on the surface layer of castings.
Go to article

Bibliography

[1] Lewandowski, J.L. (1997). Materials for foundry moulds. Kraków: WN Akapit. ISBN: 83-7108-21-2 (in Polish).
[2] Kamińska, J., Puzio, S., Angrecki, M., Stachowicz, M. & Łoś, A. (2019). Preliminary tests of innovative eco-friendly furfuryl resins and foundry sand mixtures based on these resins. Journal of Ecological Engineering. 20(9), 285-292, DOI: 10.12911/22998993/112510.
[3] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and quantification of gases releasing from furan no bake binder. Archives of Foundry Engineering. 16(3), 5-10. DOI: 10.1515/afe-2016-0039.
[4] Chate, G.R., Patel, GC M., Deshpande, A.S. & Parappagoudar, M.B. (2018). Modeling and optimization of furan moulding sand system using design of experiments and particle swarm optimization. Journal of Process Mechanical Engineering. 232(5), 1-20. DOI: 10.1177/0954408917728636.
[5] Sappinen, T., Orkas, J. & Konqvist, T. (2018). Thermal Reclamation of Foundry Sands Using Repurposed Sand Dryer Equipment. Archives of Foundry Engineering. 18(4), 99-102. DOI: 10.24425/afe.2018.125176.
[6] Kamińska, J., Puzio, S., Angrecki, M. & Łoś, A. (2020). Effect of reclaim addition on the mechanical and technological properties of moulding sands based on pro-ecological furfuryl resin. Archives of Metallurgy and Materials. 65(4), 1425-1429. DOI: 10.24425/amm.2020.133709.
[7] Yan-lei, L., Guo-hua, W., Wen-cai, L., An-tao, C., Liang, Z. & Ying-xin Wang, W. (2017). Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand. China Foundry. 14(2), 128-137. DOI: 10.1007/s41230-017-6024-3.
[8] Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M. & Roczniak, A. (2020). Environmental impact of the reclaimed sand addition to moulding sand with furan and phenol-formaldehyde resin—A comparison, Materials. 13(19), 4395; DOI: https://doi.org/10.3390/ma13194395.
[9] Holtzer, M., Dańko, R. & Kmita, A. (2016). Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment. Water Air and Soil Pollution. 227(16), 1-12. DOI: 10.1007/s11270-015-2707-9.
[10] Hosadyna, M. (2012). The effect of sulphur contained in self-hardening moulding sands on the structure of surface layer in ductile iron castings. Doctoral dissertation, Kraków. (in Polish).
[11] Holtzer, M., Zych, J. & Retel, K. (1996). The effect of mould-liquid cast iron interaction on the surface quality of castings. Przegląd Odlewnictwa. 6(1996), 129-134. (in Polish).
[12] Riposan, I., Chisamera, M., Stan, S., Skaland, T. (2008). Surface graphite degeneration in ductile iron castings for resin molds. Tsinghua Science and Technology. 13(2), 157-163.
[13] Linke, T., Sluis, J.R. (1993). The influence of coatings on the graphite structure in the rim-zone of ductile iron castings. 60th World Foundry Congress, The Netherlands
[14] Hosadyna, M., Dobosz, St.M. & Jelinek, P. (2009). The diffusion of sulphur from moulding sand to cast and methods of its elimination. Archives of Foundry Engineering. 9(4), 73-76.
[15] Sheladiya, M.V., Acharya, S.G., Mehta, K., Acharya, G.D. (2019). Evaluate sulphur diffusion at mould-metal interface in no-bake mould system. Archives of Foundry Engineering. 19(1), 63-70. DOI: 10.24425/afe.2018.125193.
[16] Anca, D., Stan, I., Chisamera, M., Riposan, I. & Stan, S. (2021). Experimental study regarding the possibility of blocking the diffusion of sulfur at casting-mold interface in ductile iron castings. Coatings. 11(673), 1-10. DOI: https://doi.org/10.3390/coatings11060673.
[17] Dańko, J., Dańko, R. & Łucarz, M. (2007). Processes and devices for the matrix regeneration of spent molding sands. Kraków: WN Akapit. ISBN: 978-83-89541-88-8 (in Polish).
[18] Holtzer, M., Bobrowski, A., Drożyński, D., Isendorf, B., Mazur, (2012). Influence of the reclaim on the properties of moulding sands with furfuryl resin applied for moulds for manganese steel castings. Archives of Foundry Engineering. 12(1), 57-62.
[19] Dańko, R., Górny, M., Holtzer, M., Żymankowska-Kumon, S. (2014). Effect of the quality of furan moulding sand on the skin layer of ductile iron castings. ISIJ International. 54(6), 1288-1293. DOI: https://doi.org/10.2355/isijinternational.54.1288.
[20] Pałyga, Ł., Stachowicz, M., Granat, K. (2015). Evaluation of 2D and 3D surface roughness of die castings from alloy AlSi9Cu3. Archives of Foundry Engineering. 15(1), 75-80.

Go to article

Authors and Affiliations

J. Kamińska
1
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID
S. Puzio
1
ORCID: ORCID
M. Stachowicz
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
  2. Wroclaw University of Technology, Faculty of Mechanical Engineering, Poland

This page uses 'cookies'. Learn more