Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2016 | vol. 63 | No 4

Download PDF Download RIS Download Bibtex

Abstract

The use of elastic bodies within a multibody simulation became more and more important within the last years. To include the elastic bodies, described as a finite element model in multibody simulations, the dimension of the system of ordinary differential equations must be reduced by projection. For this purpose, in this work, the modal reduction method, a component mode synthesis based method and a moment-matching method are used. Due to the always increasing size of the non-reduced systems, the calculation of the projection matrix leads to a large demand of computational resources and cannot be done on usual serial computers with available memory. In this paper, the model reduction software Morembs++ is presented using a parallelization concept based on the message passing interface to satisfy the need of memory and reduce the runtime of the model reduction process. Additionally, the behaviour of the Block-Krylov-Schur eigensolver, implemented in the Anasazi package of the Trilinos project, is analysed with regard to the choice of the size of the Krylov base, the blocksize and the number of blocks. Besides, an iterative solver is considered within the CMS-based method.

Go to article

Authors and Affiliations

Thomas Volzer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

The touch trigger probe plays an important role in modern metrology because of its robust and compact design with crash protection, long life and excellent repeatability. Aside from coordinate measuring machines (CMM), touch trigger probes are used for workpiece location on a machine tool and for the accuracy assessment of the machine tools. As a result, the accuracy of the measurement is a matter of interest to the users. The touch trigger probe itself as well as the measuring surface, the machine tool, measuring environment etc. contribute to measurement inaccuracies. The paper presents the effect of surface irregularities, surface wetness due to cutting fluid and probing direction on probing accuracy on a machine tool.

Go to article

Authors and Affiliations

Md. Mizanur Rahman
J.R.R. Mayer
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the presented research was to check mechanical response of human body model under loads that can occur during airplane accidents and compare results of analysis with some results of experimental tests described in literature. In simulations, new multi-purpose human body model, the VIRTHUMAN, was used. The whole model, as well as its particular segments, was earlier validated based on experimental data, which proved its accuracy to simulate human body dynamic response under condition typical for car crashes, but it was not validated for loads with predominant vertical component (loads acting along spinal column), typical for airplane crashes. Due to limitation of available experimental data, the authors focused on conducting calculations for the case introduced in 14 CFR: Parts 23.562 and 25.562, paragraph (b)(1), knowing as the 60 pitch test. The analysis consists in comparison of compression load measured in lumbar section of spine of the FAA HIII Dummy (experimental model) and in the Virthuman (numerical model). The performed analyses show numerical stability of the model and satisfactory agreement between experimental data and simulated Virthuman responses. In that sense, the Virthuman model, although originally developed for automotive analyses, shows also great potential to become valuable tool for applications in aviation crashworthiness and safety analyses, as well.

Go to article

Authors and Affiliations

Lukasz Lindstedt
Jan Vychytil
Tomasz Dziewonski
Ludek Hyncik
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloy (Ti-6Al-4V) has been extensively used in aircraft turbine-engine components, aircraft structural components, aerospace fasteners, high performance automotive parts, marine applications, medical devices and sports equipment. However, wide-spread use of this alloy has limits because of difficulty to machine it. One of the major difficulties found during machining is development of poor quality of surface in the form of higher surface roughness. The present investigation has been concentrated on studying the effects of cutting parameters of cutting speed, feed rate and depth of cut on surface roughness of the product during turning of titanium alloy. Box-Behnken experimental design was used to collect data for surface roughness. ANOVA was used to determine the significance of the cutting parameters. The model equation is also formulated to predict surface roughness. Optimal values of cutting parameters were determined through response surface methodology. A 100% desirability level in the turning process for economy was indicated by the optimized model. Also, the predicted values that were obtained through regression equation were found to be in close agreement to the experimental values.

Go to article

Authors and Affiliations

Niharika Niharika
B.P. Agrawal
Iqbal A. Khan
Zahid A. Khan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of analysis of bone remodelling in the vicinity of implants. The authors aimed at building a model and numerical procedures which may be used as a tool in the prosthesis design process. The model proposed by the authors is based on the theory of adaptive elasticity and the lazy zone concept. It takes into consideration not only changes of the internal structure of the tissue (described by apparent density) but also surface remodelling and changes caused by the effects revealing some features of “creep”. Finite element analysis of a lumbar spinal segment with an artificial intervertebral disc was performed by means of the Ansys system with custom APDL code. The algorithms were in two variants: the so-called site-independent and site-specific. Resultant density distribution and modified shape of the vertebra are compared for both of them. It is shown that this two approaches predict the bone remodelling in different ways. A comparison with available clinical outcomes is also presented and similarities to the numerical results are pointed out.

Go to article

Authors and Affiliations

Paweł Wymysłowski
Tomasz Zagrajek
Download PDF Download RIS Download Bibtex

Abstract

Second law analysis (entropy generation) for the steady two-dimensional laminar forced convection flow, heat and mass transfer of an incompressible viscous fluid past a nonlinearly stretching porous (permeable) wedge is numerically studied. The effects of viscous dissipation, temperature jump, and first-order chemical reaction on the flow over the wedge are also considered. The governing boundary layer equations for mass, momentum, energy and concentration are transformed using suitable similarity transformations to three nonlinear ordinary differential equations (ODEs). Then, the ODEs are solved by using a Keller’s box algorithm. The effects of various controlling parameters such as wedge angle parameter, velocity ratio parameter, suction/injection parameter, Prandtl number, Eckert number, temperature jump parameter, Schmidt number, and reaction rate parameter on dimensionless velocity, temperature, concentration, entropy generation number, and Bejan number are shown in graphs and analyzed. The results reveal that the entropy generation number increases with the increase of wedge angle parameter, while it decreases with the increase of velocity ratio parameter. Also, in order to validate the obtained numerical results of the present work, comparisons are made with the available results in the literature as special cases, and the results are found to be in a very good agreement.

Go to article

Authors and Affiliations

Nemat Dalir
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the methodology for designing the teeth conjunction of planetary gears in the planetary roller screw mechanism. A function of the planetary gears is to synchronize an operation of rollers in order to avoid axial displacements. A condition of the correct operation is no axial movement of rollers in relation to the nut. The planetary gears are integral parts of rollers and therefore an operation of the gear transmissions has a direct impact on cooperation of the screw, rollers and the nut. The proper design of gear engagements is essential for reducing slippage on surfaces of the cooperating threaded elements. For this purpose, in a designing method, both the limitations of operation and kinematic conditions of rollers’ operation have to be taken into account.

Go to article

Authors and Affiliations

Filip Lisowski
Jan Ryś
Download PDF Download RIS Download Bibtex

Abstract

This paper describes assumptions, goals, methods, results and conclusions related to fuel tank arrangement of a flying wing passenger airplane configuration. A short overview of various fuel tank systems in use today of different types of aircraft is treated as a starting point for designing a fuel tank system to be used on very large passenger airplanes. These systems may be used to move fuel around the aircraft to keep the centre of gravity within acceptable limits, to maintain pitch and lateral balance and stability. With increasing aircraft speed, the centre of lift moves aft, and for trimming the elevator or trimmer must be used thereby increasing aircraft drag. To avoid this, the centre of gravity can be shifted by pumping fuel from forward to aft tanks. The lesson learnt from this is applied to minimise trim drag by moving the fuel along the airplane. Such a task can be done within coming days if we know the minimum drag versus CG position and weight value. The main part of the paper is devoted to wing bending moment distribution. A number of arrangements of fuel in airplane tanks are investigated and a scenario of refuelling – minimising the root bending moments – is presented. These results were obtained under the assumption that aircraft is in long range flight (14 hours), CL is constant and equal to 0.279, Specific Fuel Consumption is also constant and that overall fuel consumption is equal to 20 tons per 1 hour. It was found that the average stress level in wing structure is lower if refuelling starts from fuel tanks located closer to longitudinal plane of symmetry. It can influence the rate of fatigue.

Go to article

Authors and Affiliations

Zdobyslaw Goraj
Download PDF Download RIS Download Bibtex

Abstract

In the present study, butt joints of aluminum (Al) 8011-H18 and pure copper (Cu) were produced by friction stir welding (FSW) and the effect of plunge depth on surface morphology, microstructure and mechanical properties were investigated. The welds were produced by varying the plunge depth in a range from 0.1 mm to 0.25 mm. The defect-free joints were obtained when the Cu plate was fixed at the advancing side. It was found that less plunging depth gives better tensile properties compare to higher plunging depth because at higher plunging depth local thinning occurs at the welded region. Good tensile properties were achieved at plunge depth of 0.2 mm and the tensile strength was found to be higher than the strength of the Al (weaker of the two base metals). Microstructure study revealed that the metal close to copper side in the Nugget Zone (NZ) possessed lamellar alternating structure. However, mixed structure of Cu and Al existed in the aluminum side of NZ. Higher microhardness values were witnessed at the joint interfaces resulting from plastic deformation and the presence of intermetallics.

Go to article

Authors and Affiliations

Mohd Atif Wahid
Arshad Noor Siddiquee
Zahid Akhtar Khan
Mohammad Asjad
Download PDF Download RIS Download Bibtex

Abstract

Three-dimensional (3D) finite element analyses (FEA) are performed to simulate the local compression (LC) technique on the clamped single-edge notched tension (SE(T)) specimens. The analysis includes three types of indenters, which are single pair of cylinder indenters (SPCI), double pairs of cylinder indenters (DPCI) and single pair of ring indenters (SPRI). The distribution of the residual stress in the crack opening direction in the uncracked ligament of the specimen is evaluated. The outcome of this study can facilitate the use of LC technique on SE(T) specimens.

Go to article

Authors and Affiliations

Yifan Huang
Wenxing Zhou
Download PDF Download RIS Download Bibtex

Abstract

Computer-aided tools help in shortening and eradicating numerous repetitive tasks that reduces the gap between digital model and actual product. Use of these tools assists in realizing free-form objects such as custom fit products as described by a stringent interaction with the human body. Development of such a model presents a challenging situation for reverse engineering (RE) which is not analogous with the requirement for generating simple geometric models. Hence, an alternating way of producing more accurate three-dimensional models is proposed. For creating accurate 3D models, point clouds are processed through filtering, segmentation, mesh smoothing and surface generation. These processes help in converting the initial unorganized point data into a 3D digital model and simultaneously influence the quality of model. This study provides an optimum balance for the best accuracy obtainable with maximum allowable deviation to lessen computer handling and processing time. A realistic non trivial case study of free-form prosthetic socket is considered. The accuracy obtained for the developed model is acceptable for the use in medical applications and FEM analysis.

Go to article

Authors and Affiliations

Vimal Kumar Pathak
Chitresh Nayak
Amit Kumar Singh
Himanshu Chaudhary
Download PDF Download RIS Download Bibtex

Abstract

Successful implementation of an active vibration control system is strictly correlated to the exact knowledge of the dynamic behavior of the system, of the excitation level and spectra and of the sensor and actuator’s specification. Only the correct management of these aspects may guarantee the correct choice of the control strategy and the relative performance. Within this paper, some preliminary activities aimed at the creation of a structurally simple, cheap and easily replaceable active control systems for metal panels are discussed. The final future aim is to control and to reduce noise, produced by vibrations of metal panels of the body of a car. The paper is focused on two points. The first one is the realization of an electronic circuit for Synchronized Shunted Switch Architecture (SSSA) with the right dimensioning of the components to control the proposed test article, represented by a rectangular aluminum plate. The second one is a preliminary experimental study on the test article, in controlled laboratory conditions, to compare performances of two possible control approach: SSSA and a feed-forward control approach. This comparison would contribute to the future choice of the most suitable control architecture for the specific attenuation of structure-born noise related to an automotive floor structure under deterministic (engine and road-tyre interaction) and stochastic (road-tyre interaction and aerodynamic) forcing actions.

Go to article

Authors and Affiliations

Massimo Viscardi
Romeo di Leo

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Outline of procedures
  • To ensure that high scientific standards are met, the editorial office of Archive of Mechanical Engineering implements anti-ghost writing and guest authorship policy. Ghostwriting and guest authorship are indication of scientific dishonesty and all cases will be exposed: editorial office will inform adequate institutions (employers, scientific societies, scientific editors associations, etc.).
  • To maintain high quality of published papers, the editorial office of Archive of Mechanical Engineering applies reviewing procedure. Each manuscript undergoes crosscheck plagiarism screening. Each manuscript is reviewed by at least two independent reviewers.
  • Before publication of the paper, authors are obliged to send scanned copies of the signed originals of the declaration concerning ghostwriting, guest authorship and authors contribution and of the Open Access license.
Submission of manuscripts

The manuscripts must be written in one of the following formats:
  • TeX, LaTeX, AMSTeX, AMSLaTeX (recommended),
  • MS Word, either as standard DOCUMENT (.doc, .docx) or RICH TEXT FORMAT (.rtf).
All submissions to the AME should be made electronically via Editorial System – an online submission and peer review system at https://www.editorialsystem.com/ame. First-time users must create an Author’s account to obtain a user ID and password required to enter the system. All manuscripts receive individual identification codes that should be used in any correspondence with regard to the publication process. For the authors already registered in Editorial System it is enough to enter their username and password to log in as an author. The corresponding author should be identified while submitting a paper – personal e-mail address and postal address of the corresponding author are required. Please note that the manuscript should be prepared using our LaTeX or Word template and uploaded as a PDF file.

If you experience difficulties with the manuscript submission website, please contact the Assistant to the Editor of the AME (ame.eo@meil.pw.edu.pl).

All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf in all matters pertaining to publication. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

Length and arrangement

Papers (including tables and figures) should not exceed in length 25 pages of size 12.6 cm x 19.5 cm (printing area) with a font size of 11 pt. For manuscript preparation, the Authors should use the templates for Word or LaTeX available at the journal webpage. Please notice that the final layout of the article will be prepared by the journal's technical staff in LaTeX. Articles should be organized into the following sections:
  • List of keywords (separated by commas),
  • Full Name(s) of Author(s), Affiliation(s), Corresponding Author e-mail address,
  • Title,
  • Abstract,
  • Main text,
  • Appendix,
  • Acknowledgments (if applicable),
  • References.
Affiliations should include department, university, city and country. ORCID identifiers of all Authors should be added.
We suggest the title should be as short as possible but still informative.

An abstract should accompany every article. It should be a brief summary of significant results of the paper and give concise information about the content of the core idea of the paper. It should be informative and not only present the general scope of the paper, but also indicate the main results and conclusions. An abstract should not exceed 200 words.

Please follow the general rules for writing the main text of the paper:
  • use simple and declarative sentences, avoid long sentences, in which the meaning may be lost by complicated construction,
  • divide the main text into sections and subsections (if needed the subsections may be divided into paragraphs),
  • be concise, avoid idle words,
  • make your argumentation complete; use commonly understood terms; define all nonstandard symbols and abbreviations when you introduce them;
  • explain all acronyms and abbreviations when they first appear in the text;
  • use all units consistently throughout the article;
  • be self-critical as you review your drafts.
The authors are advised to use the SI system of units.

Artwork/Equations/Tables

You may use line diagrams and photographs to illustrate theses from your text. The figures should be clear, easy to read and of good quality (300 dpi). The figures are preferred in a vector format (bitmap formats are acceptable, but not recommended). The size of the figures should be adequate to their contents. Use 8-9pt font size of the text within the figures.

You should use tables only to improve conciseness or where the information cannot be given satisfactorily in other ways. Tables should be numbered consecutively and referred to within the text by numbers. Each table should have an explanatory caption which should be as concise as possible. The figures and tables should be inserted in the text file, where they are mentioned.

Displayed equations should be numbered consecutively using Arabic numbers in parentheses. They should be centered, leaving a small space above and below to separate it from the surrounding text.

Footnotes/Endnotes/Acknowledgements

We encourage authors to restrict the use of footnotes. Information concerning research grant support should appear in a separate Acknowledgements section at the end of the paper. Acknowledgements of the assistance of colleagues or similar notes of appreciation should also appear in the Acknowledgements section.

References
References should be numbered and listed in the order that they appear in the text. References indicated by numerals in square brackets should complete the paper in the following style:

Books:
[1] R.O. Author. Title of the Book in Italics. Publisher, City, 2018.

Articles in Journals:
[2] D.F. Author, B.D. Second Author, and P.C. Third Author. Title of the article. Full Name of the Journal in Italics, 52(4):89–96, 2017. doi: 1234565/3554. (where means: 52 – volume; 4 – number or issue; 89–96 – pages, and 1234565/3554 – doi number (if exists).)

Theses:
[3] W. Author. Title of the thesis. Ph.D. Thesis, University, City, Country, 2010.

Conference Proceedings:
[4] H. Author. Title of the paper. In Proc. Conference Name in Italics, pages 001–005, Conference Place, 10-15 Jan. 2015. doi: 98765432/7654vd.

English language

Archive of Mechanical Engineering is published in English. Make sure that your manuscript is clearly and grammatically written. The content should be understandable and should not cause any confusion to the readers, including the reviewers. After accepting the manuscript for a publication in the AME, we offer a free language check service, for correcting small language mistakes.

Submission of Revised Articles

When revision of a manuscript is requested, authors are expected to deliver the revised version of the manuscript as soon as possible. The manuscript should be uploaded directly to the Editorial System as an answer to the Editor's decision, and not as a new manuscript. If it is the 1st revision, the authors are expected to return revised manuscript within 60 days; if it is the 2nd revision, the authors are expected to return revised manuscript within 14 days. Additional time for resubmission must be requested in advance. If the above mentioned deadlines are not met, the manuscript may be treated as a new submission.

Outline of the Production Process

Once an article has been accepted for publication, the manuscript is transferred into our production system to be language-edited and formatted. Language/technical editors reserve the privilege of editing manuscripts to conform with the stylistic conventions of the journal. Once the article has been typeset, PDF proofs are generated so that authors can approve all editing and layout.

Proofreading

Proofreading should be carried out once a final draft has been produced. Since the proofreading stage is the last opportunity to correct the article to be published, the authors are requested to make every effort to check for errors in their proofs before the paper is posted online. Authors may be asked to address remarks and queries from the language and/or technical editors. Queries are written only to request necessary information or clarification of an unclear passage. Please note that language/technical editors do not query at every instance where a change has been made. It is the author's responsibility to read the entire text, tables, and figure legends, not just items queried. Major alterations made will always be submitted to the authors for approval. The corresponding author receives e-mail notification when a PDF is available and should return the comments within 3 days of receipt. Comments must be uploaded to Editorial System.

Reviewers


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers in 2023

Sara I. ABDELSALAM – University of California Riverside, United States
M. ARUNA – Liwa College of Technology, United Arab Emirates
Krzysztof BADYDA – Warsaw University of Technology, Poland
Nathalie BÄSCHLIN – Kunstmuseum Bern, Germany
Joanna BIJAK – Silesian University of Technology, Gliwice, Poland
Tomas BODNAR – The Czech Academy of Sciences, Prague, Czech Republic
Dariusz BUTRYMOWICZ – Białystok University of Technology, Poland
Suleyman CAGAN – Mechanical Engineering, Mersin University, Turkey
Claudia CASAPULLA – University of Naples Federico II, Italy
Peng CHEN – Northwestern Polytechnical University, Xi’an, China
Yao CHENG – Southwest Jiaotong University, Chengdu, China
Jan de JONG – University of Twente, Netherlands
Mariusz DEJA – Gdańsk University of Technology, Poland
Jerzy EJSMONT – Gdańsk University of Technology, Poland
İsmail ESEN – Karabuk University, Turkey
Pedro Javier GAMEZ-MONTERO – Universitat Politecnica de Catalunya, Spain
Aman GARG – National Institute of Technology, Kurukshetra, India
Michał HAĆ – Warsaw University of Technology, Poland
Satoshi ISHIKAWA – Kyushu University, Japan
Jacek JACKIEWICZ – Kazimierz Wielki University, Bydgoszcz, Poland
Krzysztof JAMROZIAK – Wrocław University of Technology, Poland
Hong-Lae JANG – Changwon National University, Korea (South)
Łukasz JANKOWSKI – Institute of Fluid-Flow Machinery, PAS, Gdansk, Poland
Albizuri JOSEBA – University of the Basque Country, Spain
Łukasz KAPUSTA – Warsaw University of Technology, Poland
Dariusz KARDAŚ – Institute of Fluid-Flow Machinery, PAS, Gdansk, Poland
Panagiotis KARMIRIS-OBRATAŃSKI – AGH University of Science and Technology, Cracow, Poland
Sivakumar KARTHIKEYAN – SRM Nagar
Tarek KHELFA – Hunan University of Humanities Science and Technology, China
Sven-Joachim KIMMERLE – Universität der Bundeswehr München, Germany
Thomas KLETSCHKOWSKI – HAW Hamburg, Germany
Piotr KLONOWICZ – Institute of Fluid-Flow Machinery, PAS, Gdansk, Poland
Vladis KOSSE – Queensland University of Technology, Australia
Mariusz KOSTRZEWSKI – Warsaw University of Technology, Poland
Maria KOTELKO – Lodz University of Technology, Poland
Michał KOWALIK – Warsaw University of Technology, Poland
Zbigniew KRZEMIANOWSKI – Institute of Fluid-Flow Machinery, Gdańsk, Poland
Slawomir KUBACKI – Warsaw University of Technology, Poland
Mieczysław KUCZMA – Poznan University of Technology, Poland
Waldemar KUCZYŃSKI – The Koszalin University of Technology, Poland
Rafał KUDELSKI – AGH University of Science and Technology, Cracow, Poland
Rajesh KUMAR – Sant Longowal Institute of Engineering and Technology, India
Mustafa KUNTOĞLU – Selcuk University, Turkey
Anna LEE – Pohang University of Science and Technology, South Korea, Korea (South)
Guolong LI – Chongqing University, China
Luxian LI – Xi'an Jiaotong University, China
Yingchao LI – Ludong University, Yantai, China
Xiaochuan LIN – Nanjing Tech University, China
Zhihong LIN – HuaQiao University, China
Yakun LIU – Massachusetts Institute of Technology, United States
Jinjun LU – Northwest University, Xiʼan, China
Paweł MACIĄG – Warsaw University of Technology, Poland
Paweł MALCZYK – Warsaw University of Technology, Poland
Emil MANOACH – Bulgarian Academy of Sciences, Sofia, Bulgaria
Mihaela MARIN – “Dunărea de Jos” University of Galati, Romania
Miloš MATEJIĆ – University of Kragujevac, Serbia
Krzysztof MIANOWSKI – Warsaw University of Technology, Poland
Tran MINH TU – Hanoi University of Civil Engineering, Viet Nam
Farhad Sadegh MOGHANLOU – University of Mohaghegh Ardabili, Ardabil, Iran
Mohsen MOTAMEDI – University of Isfahan, Iran
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Mohamed NASR – National Research Centre, Giza, Egypt
Huu-That NGUYEN – Nha Trang University, Viet Nam
Tan-Luy NGUYEN – Ho Chi Minh City University of Technology, Viet Nam
Viorel PALEU – Gheorghe Asachi Technical University of Iasi, Romania
Nicolae PANC – Technical University of Cluj-Napoca, Romania
Marcin PĘKAL – Warsaw University of Technology, Poland
Van Vinh PHAM – Le Quy Don Technical University, Hanoi, Viet Nam
Vaclav PISTEK – Brno University of Technology, Czech Republic
Paweł PYRZANOWSKI – Warsaw University of Technology, Poland
Lei QIN – Beijing Information Science & Technology University, China
Milan RACKOV – University of Novi Sad, Serbia
Yuriy ROMASEVYCH – National University of Life and Environmental Sciences of Ukraine, Kiev, Ukraine
Artur RUSOWICZ – Warsaw University of Technology, Poland
Andrzej SACHAJDAK – Silesian University of Technology, Gliwice, Poland
Mirosław SEREDYŃSKI – Warsaw University of Technology, Poland
Maciej SUŁOWICZ – Cracow University of Technology, Poland
Biswajit SWAIN – National Institute of Technology, Rourkela, India
Tadeusz SZYMCZAK – Motor Transport Institute, Warsaw, Poland
Reza TAHERDANGKOO – Institute of Geotechnics, Freiberg, Germany
Rulong TAN – Chongqing University of Technology, China
Daniel TOBOŁA – Łukasiewicz Research Network - Cracow Institute of Technology, Poland
Milan TRIFUNOVIĆ – University of Niš, Serbia
Duong VU – Duy Tan University, Viet Nam
Shaoke WAN – Xi’an Jiaotong University, China
Dong WEI – Northwest A&F University, Yangling , China
Marek WOJTYRA – Warsaw University of Technology, Poland
Mateusz WRZOCHAL – Kielce University of Technology, Poland
Hugo YAÑEZ-BADILLO – TecNM: Tecnológico de Estudios Superiores de Tianguistenco, Mexico
Guichao YANG – Nanjing Tech University, China
Xiao YANG – Chongqing Technology and Business University, China
Yusuf Furkan YAPAN – Yildiz Technical University, Turkey
Luhe ZHANG – Chongqing University, China
Xiuli ZHANG – Shandong University of Technology, Zibo, China

List of reviewers in 2022
Isam Tareq ABDULLAH – Middle Technical University, Baghdad, Iraq
Ahmed AKBAR – University of Technology, Iraq
Nandalur AMER AHAMMAD – University of Tabuk, Saudi Arabia
Ali ARSHAD – Riga Technical University, Latvia
Ihsan A. BAQER – University of Technology, Iraq
Thomas BAR – Daimler AG, Stuttgart, Germany
Huang BIN – Zhejiang University, Zhoushan, China
Zbigniew BULIŃSKI – Silesian University of Technology, Poland
Onur ÇAVUSOGLU – Gazi University, Turkey
Ali J CHAMKHA – Duy Tan University, Da Nang , Vietnam
Dexiong CHEN – Putian University, China
Xiaoquan CHENG – Beihang University, Beijing, China
Piotr CYKLIS – Cracow University of Technology, Poland
Agnieszka DĄBSKA – Warsaw University of Technology, Poland
Raphael DEIMEL – Berlin University of Technology, Germany
Zhe DING – Wuhan University of Science and Technology, China
Anselmo DINIZ – University of Campinas, São Paulo, Brazil
Paweł FLASZYŃSKI – Institute of Fluid-Flow Machinery, Gdańsk, Poland
Jerzy FLOYRAN – University of Western Ontario, London, Canada
Xiuli FU – University of Jinan, China
Piotr FURMAŃSKI – Warsaw University of Technology, Poland
Artur GANCZARSKI – Cracow University of Technology, Poland
Ahmad Reza GHASEMI– University of Kashan, Iran
P.M. GOPAL – Anna University, Regional Campus Coimbatore, India
Michał GUMNIAK – Poznan University of Technology, Poland
Bali GUPTA – Jaypee University of Engineering and Technology, India
Dmitriy GVOZDYAKOV – Tomsk Polytechnic University, Russia
Jianyou HAN – University of Science and Technology, Beijing, China
Tomasz HANISZEWSKI – Silesian University of Technology, Poland
Juipin HUNG – National Chin-Yi University of Technology, Taichung, Taiwan
T. JAAGADEESHA – National Institute of Technology, Calicut, India
Jacek JACKIEWICZ – Kazimierz Wielki University, Bydgoszcz, Poland
JC JI – University of Technology, Sydney, Australia
Feng JIAO – Henan Polytechnic University, Jiaozuo, China
Daria JÓŹWIAK-NIEDŹWIEDZKA – Institute of Fundamental Technological Research, Warsaw, Poland
Rongjie KANG – Tianjin University, China
Dariusz KARDAŚ – Institute of Fluid-Flow Machinery, Gdansk, Poland
Leif KARI – KTH Royal Institute of Technology, Sweden
Daria KHANUKAEVA – Gubkin Russian State University of Oil and Gas, Russia
Sven-Joachim KIMMERLE – Universität der Bundeswehr München, Germany
Yeong-Jin KING – Universiti Tunku Abdul Rahman, Malaysia
Kaushal KISHORE – Tata Steel Limited, Jamshedpur, India
Nataliya KIZILOVA – Warsaw University of Technology, Poland
Adam KLIMANEK – Silesian University of Technology, Poland
Vladis KOSSE – Queensland University of Technology, Australia
Maria KOTEŁKO – Lodz University of Technology, Poland
Roman KRÓL – Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Krzysztof KUBRYŃSKI – Airforce Institute of Technology, Warsaw, Poland
Mieczysław KUCZMA – Poznan University of Technology, Poland
Paweł KWIATOŃ – Czestochowa University of Technology, Poland
Lihui Lang – Beihang University, China
Rafał LASKOWSKI – Warsaw University of Technology, Poland
Guolong Li – Chongqing University, China
Leo Gu LI – Guangzhou University, China
Pengnan LI – Hunan University of Science and Technology, China
Nan LIANG – University of Toronto, Mississauga, Canada
Michał LIBERA – Poznan University of Technology, Poland
Wen-Yi LIN – Hungkuo Delin University of Technology, Taiwan
Wojciech LIPINSKI – Austrialian National University, Canberra, Australia
Linas LITVINAS – Vilnius University, Lithuania
Paweł MACIĄG – Warsaw University of Technology, Poland
Krishna Prasad MADASU – National Institute of Technology Raipur, Chhattisgarh, India
Trent MAKI – Amino North America Corporation, Canada
Marco MANCINI – Institut für Energieverfahrenstechnik und Brennstofftechnik, Germany
Piotr MAREK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Phani Kumar MEDURI – VIT-AP University, Amaravati, India
Fei MENG – University of Shanghai for Science and Technology, China
Saleh MOBAYEN – University of Zanjan, Iran
Vedran MRZLJAK – Rijeka University, Croatia
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Mohamed Fawzy NASR – National Research Centre, Giza, Egypt
Paweł OCŁOŃ – Cracow University of Technology, Poland
Yusuf Aytaç ONUR – Zonguldak Bulent Ecevit University, Turkey
Grzegorz ORZECHOWSKI – LUT University, Lappeenranta, Finland
Halil ÖZER – Yıldız Technical University, Turkey
Muthuswamy PADMAKUMAR – Technology Centre Kennametal India Ltd., Bangalore, India
Viorel PALEU – Gheorghe Asachi Technical University of Iasi, Romania
Andrzej PANAS – Warsaw Military Academy, Poland
Carmine Maria PAPPALARDO – University of Salerno, Italy
Paweł PARULSKI – Poznan University of Technology, Poland
Antonio PICCININNI – Politecnico di Bari, Italy
Janusz PIECHNA – Warsaw University of Technology, Poland
Vaclav PISTEK – Brno University of Technology, Czech Republic
Grzegorz PRZYBYŁA – Silesian University of Technology, Poland
Paweł PYRZANOWSKI – Warsaw University of Technology, Poland
K.P. RAJURKARB – University of Nebraska-Lincoln, United States
Michał REJDAK – Institute of Chemical Processing of Coal, Zabrze, Poland
Krzysztof ROGOWSKI – Warsaw University of Technology, Poland
Juan RUBIO – University of Minas Gerais, Belo Horizonte, Brazil
Artur RUSOWICZ – Warsaw University of Technology, Poland
Wagner Figueiredo SACCO – Universidade Federal Fluminense, Petropolis, Brazil
Andrzej SACHAJDAK – Silesian University of Technology, Poland
Bikash SARKAR – NIT Meghalaya, Shillong, India
Bozidar SARLER – University of Lubljana, Slovenia
Veerendra SINGH – TATA STEEL, India
Wieńczysław STALEWSKI – Institute of Aviation, Warsaw, Poland
Cyprian SUCHOCKI – Institute of Fundamental Technological Research, Warsaw, Poland
Maciej SUŁOWICZ – Cracov University of Technology, Poland
Wojciech SUMELKA – Poznan University of Technology, Poland
Tomasz SZOLC – Institute of Fundamental Technological Research, Warsaw, Poland
Oskar SZULC – Institute of Fluid-Flow Machinery, Gdansk, Poland
Rafał ŚWIERCZ – Warsaw University of Technology, Poland
Raquel TABOADA VAZQUEZ – University of Coruña, Spain
Halit TURKMEN – Istanbul Technical University, Turkey
Daniel UGURU-OKORIE – Federal University, Oye Ekiti, Nigeria
Alper UYSAL – Yildiz Technical University, Turkey
Yeqin WANG – Syndem LLC, United States
Xiaoqiong WEN – Dalian University of Technology, China
Szymon WOJCIECHOWSKI – Poznan University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Guenter WOZNIAK – Technische Universität Chemnitz, Germany
Guanlun WU – Shanghai Jiao Tong University, China
Xiangyu WU – University of California at Berkeley, United States
Guang XIA – Hefei University of Technology, China
Jiawei XIANG – Wenzhou University, China
Jinyang XU – Shanghai Jiao Tong University,China
Jianwei YANG – Beijing University of Civil Engineering and Architecture, China
Xiao YANG – Chongqing Technology and Business University, China
Oguzhan YILMAZ – Gazi University, Turkey
Aznifa Mahyam ZAHARUDIN – Universiti Teknologi MARA, Shah Alam, Malaysia
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
S.H. ZHANG – Institute of Metal Research, Chinese Academy of Sciences, China
Yu ZHANG – Shenyang Jianzhu University, China
Shun-Peng ZHU – University of Electronic Science and Technology of China, Chengdu, China
Yongsheng ZHU – Xi’an Jiaotong University, China

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China



This page uses 'cookies'. Learn more