Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2014 | No 4 December

Download PDF Download RIS Download Bibtex

Abstract

Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.
Go to article

Authors and Affiliations

Jarosław Karwacki
Dariusz Butrymowicz
Marian Trela
Download PDF Download RIS Download Bibtex

Abstract

The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type). The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
Go to article

Authors and Affiliations

Jarosław Mikielewicz
Witold Rybiński
Download PDF Download RIS Download Bibtex

Abstract

The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.
Go to article

Authors and Affiliations

Nadjib Ghiti
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Go to article

Authors and Affiliations

Janusz Kotowicz
Łukasz Bartela
Mikosz Dorota
Download PDF Download RIS Download Bibtex

Abstract

The article shows the proposed solution of the objective function for the seasonal thermal energy storage system. In order to develop this function the technological and economic assumptions were used. In order to select the optimal system configuration mathematical models of the main elements of the system were built. Using these models, and based on the selected design point, the simulation of the entire system for randomly generated outside temperatures was made. The proposed methodology and obtained relationships can be readily used for control purposes, constituting model predicted control (MPC).
Go to article

Authors and Affiliations

Jarosław Milewski
Łukasz Szabłowski
Wojciech Bujalski
Download PDF Download RIS Download Bibtex

Abstract

A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates.
Go to article

Authors and Affiliations

Sebastian Lepszy
Daniel Czaja
Tadeusz Chmielnak
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sensitivity of developed model to a selection of the model of two-phase flow multiplier and the nonadiabatic effects. For that purpose two models have been analysed namely the one due to Müller-Steinhagen and Heck, and Friedel. In addition, the work shows the importance of taking surface tension into account in the calculation of the flow structure.
Go to article

Authors and Affiliations

Dariusz Mikielewicz
Blanka Jakubowska

Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The paper should not exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines and Keywords.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités).

3. All abbreviations should be spelled out first time they are introduced in the text.

4. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the page.

5. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

6. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

7. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

8. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a MS Word file – ∗.doc, ∗.docx or LATEX file – ∗.tex. For revised manuscripts after peer review process, figures should be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm. Figures created in MS World, Exel, or PowerPoint will not be accepted. The quality of images downloaded from websites and the Internet are also not acceptable, because of their low resolution (usually only 72 dpi), inadequate for print reproduction.

9. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

(a) for books: the publishing house and the place and year of publication, for example:
[1] Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.

(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example:
[2] Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction . AIAA J. 8(1970), No. 11, 2004–2009.

For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference.

Authors are responsible for ensuring that the information in each reference is complete and accurate.

10. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.


Manuscript submission

Manuscripts to be considered for publication should be electronically submitted to the Editorial Office via the online submission and reviewing system, the Editorial System, at http://www.editorialsystem.com/aot. Submission to the journal proceeds totally on line and you will be guided stepwise throughout the process of the creation and uploading of your files. The body of the text, tables and figures, along with captions for figures and tables should be submitted separately. The system automatically converts source files to a single PDF file article, for subsequent approval by the corresponding Author, which is then used in the peer-review process. All correspondence, including notification confirming the submission of the manuscripts to the Editorial Office, notification of the Editorsñs decision and requests for revision, takes place by e-mails. Authors should designate the corresponding author, whose responsibility is to represent the Authors in contacts with the Editorial Office. Authors are requested not to submit the manuscripts by post or e-mail.
The illustrations may be submitted in color, however they will be printed in black and white in the journal, so the grayscale contributions are preferable. Therefore, the figure caption and the entire text of the paper should not make any reference to color in the illustration. Moreover the illustration should effectively convey author’s intended meaning when it is printed as a halftone. The illustrations will be reproduced in color in the online publication.


Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.


Transfer of Copyright Agreement

Submission of the manuscript means that the authors automatically agree to assign the copyright to the Publisher. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send by email a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors to the Managing Editor of the Journal. The copyright form can be downloaded from the journal’s website at http://www.imp.gda.pl/archives-of-thermodynamics/ under Notes for Contributors.

This page uses 'cookies'. Learn more